

Zero Leaks. Forever. Is There A Place For Pragmatism Over Perfection In Well Abandonment?

Ruth Thomas

Subsurface Manager, Well-Safe Solutions

Copyright © 2024 Well-Safe Solutions Ltd

Presentation Outline

Leaks Around The Globe

Regulatory Expectations

Case Study Example: Options for Isolating Shallow Biogenic Gas Zones

The Role of Leak Characterisation & Societal Cost in Abandonment

Zero Leaks.

Forever.

It's ok, our plugs are holding!

Credit: Courtesy of Officers and Crew of NOAA Ship PISCES; Collection of Commander Jeremy Adams, NOAA Corps

Credit: NOAA OKEANOS Explorer Program, 2013 ROV Shakedown and Field Trials

Methane bubbles flow, offshore Virginia

¹⁵¹ Somewhere a' little 141 closer to home...

Welcome to The Smugglers

Book Now

Inn

Saint Helier

Global "Seeps & Weeps"

···· Offshore seeps

• Onshore seeps

1901 - The Lucas Gusher at Spindletop Oil Field, Texas.

Very good reasons to be conscious of the impact of leaking hydrocarbons

Darn, it's cold

this time!

(and in particular, methane)

Carbon Capture & Storage (CCS)

Cumulative **Benefit Mindset** for CCS

Success is measured by the global total amount of CO₂ removed from the atmosphere and stored underground

("CCS Directive") Chapter 2 Article 4: Selection of Storage

Guidance Document 1 CO₂ Storage Lifecycle and Risk Management Framework

99% of injected CO₂ is permanently stored

Cumulative benefit outweighs the cumulative negative impacts

Regulatory Context

Well Permanent Plugging & Abandonment (PP&A)

Zero Leaks Forever Mindset

Conservative, multi-level plugging strategy driving costescalation and project deferment

Regulatory Context

Well Permanent Plugging & Abandonment (PP&A)

Risk-Based Mindset

Can there ever be an "acceptable leak rate/risk" for hydrocarbons?

1996 No. 913 HEALTH AND SAFETY statutory instrument

Reg. 13 of Offshore Installations and Wells (Design and Construction, etc) Regulations 1996 (SI 1996/913) [DCR]

Case Study Example

Isolation Options For Shallow Biogenic Gas Formations In The Central North Sea, U.K.C.S

Where Is Biogenic Gas Present?

 Early Pleistocene interval comprising sandstones and siltstones of mixed glaciomarine origin

Re-drafted from "Has anyone seen the Crenulate?" Francis Buckley, OSIG 2017

Historical Blow Out Well 22/4b-4

Source: von Deimling et al. 2015

22/4b-4 blowout in November 1990

11 22/4b-4, Mobil

The well had encountered a 31 - 46m thick, 67 psia over-pressured gas sand at c. 360m below seabed

Re-drafted from Millenium Atlas, 2000

"1.7k to 25k t/CH4/year" (Leifer et al. 2015)

Nearby Platform Abandonment

Well Architecture & Current Status

- Platform with 12 wells
- Sustained annular pressure
 (SAP) of up to 150 psi
 present in C-annulus

Operational pressures and gas must be managed safely

The necessity for long-term isolation remains a subject of ongoing debate

Option 1: Conventional Barrier

- Milled window approach
- Fully verified
- "Pressure containing"

Option 2: Perforate & Squeeze Barriefor isolating "chronic > "Best Endeavours" > Annuli may remain unverified Iow-level biogenic gas leakage"

Option 3: Environmental Barrier

Isolation of annular contaminants only

Reservoir Abandonment

Simplified Operational Steps

Total time per well: 6 days Total cost per well: £0.72 mm Total cost across all wells (n=12): £8.61 mm

Simplified Operational Steps Assumptions: Level 4 cost estimate 9% NPT 5% WOW Spread rate: £130k/d **Option 1: Milled Window** 6.0 5.0 **Duration (days / well)** 0.700 **Duration** 1.00 0.0 Cut 9 5/8" Set Bridge Plug Mill & Under-Set Balanced **Recover 9** Set Casing 5/8"Casing & Displace Well Ream Window Cement Plug (12 Environmental to Milling Fluid hrs WOC) Plug

Verified, fully rock-to-rock barrier

Option 1: Conventional Barrier

Option 1: Conventional Barrier

Simplified Operational Steps

Total rost per well: £1.68 mm Total cost across all wells (n=12): £20.13 mm

Simplified Operational Steps Assumptions: Level 4 cost estimate 9% NPT 5% WOW Spread rate: £130k/d **Option 2: Perf & Squeeze** 2.5 2.0 Duration (days / well) ¹⁰ ¹⁰ ¹⁰ 0.0 Cut 9 5/8" Casing Set Bridge Plug Run with Squeeze **Recover 9** Perforate and 5/8"Casing **Inflow Test** Packer and Cementing (12 hrs WOC)

Option 2: Perforate & Squeeze Barrier

- Not to scale! Seabed 26" conductor 18 5/8" shoe Biogenic gas sand 13 3/8" shoe Caprocl 95/8" shoe Reservoir
- "Knowledge is Power" inflow test is an opportunity to collect a pressure data point to de-risk operations – only required on first well

Obtaining circulation pathway might be challenging due to strung out cement – may have to repeat - shallower

Option 2: Perforate & Squeeze Barrier

Total bime per well: £0.928 mm Total cost per well: £0.928 mm Total cost across all wells (n=12): £11.14 mm

Option 3: Environmental Barrier Only

Simplified Operational Steps

Seabed 26" conductor 18 5/8" shoe Biogenic gas sand 13 3/8" shoe Caproc 95/8" shoe Reservoii

Not to scale!

Total cost per well: £0.517 mm Total cost across all wells (n=12): £6.21 mm

How Do Options 1 – 2 – 3 Compare?

Comparative Assessment Criteria

Three options assessed against criteria for:
--

Legislation	Technical	Environment	Cost
Does option comply?	How complex is the option & what is the chance of success?	What is the resource burden and is there a residual leak risk?	What is the overall cost of option?

According to:

This assessment assumes all options are technically possible and can be executed safely

How Do Options 1 – 2 – 3 Compare?

Comparative Assessment Results

Negative

Positive

Criteria Option	Legislation	Technical	Environment	(Days) Cost £
Option 1: Conventional Barrier	Fully-lateral barrier Complies with Regulation / Guidance	Lower chance of success. Need sufficient weight and torque to mill, SWARF, pack-offs, determines P&A unit, short response time	Extended operational time uses more resources If successful = gas-tight, pressure containing	(144.5 days) £20.13 mm
Option 2: Perforate & Squeeze Barrier	Not a fully-verified barrier Complies with spirit of ALARP	Good chance of success Establishing circulation pathway may impact quality of annular barrier	Simpler operations uses less resource than Optio Trade Off Increased in clincol of future leakage	(80.6 days) £11.14 mm (£8.9 mm less than Option 1)
Option 3: Environmental Barrier only	Annular OBM containment only	Excellent chance of success Simple operations, proven technology	Simpler operations uses less resource than Options Leak Acceptance Much increased likelihood of leakage	(41.4 days) £6.21 mm (£4.9 mm less than Option 2)

Option 1: Conventional Barrier

Option 2: Perforate & Squeeze Barrier

safety risks mitigated

With health &

Option 3: Environmental Barrier

What is the only important metric left to consider?

Increased leak probability

Key Consideration "Cost to Society" of releasing methane into the atmosphere

Climate Impact of Methane (CH₄)

Calculating "Cost to Society"?

- Methane is a more potent greenhouse gas (GHG) than CO₂ in the short-term
- Global Warming Potential (GWP) 84-87 times that of CO2 over 20 years*
- Methane emissions are standardised to CO2 equivalent (CO2e)
- Carbon Value is determined by UK Government as the "cost of reducing emissions to meet the UK's climate goals" – applied to all CO₂e metrics

	Assumed leak rate / volume over 20 years	tCH₄ to tCO₂e using GWP20 (87)	2025 Carbon Value**	Societal Cost (£)
Unmitigated Leak Rate Example	Leak rate 10 tCH4 /yr = 200 tCH 4	200 tCH4 * 87 = 17,400 tCO2e	£287/tCO2e	17,400 tCO ² e * £287 <mark>£ 5 mm</mark>

Option 1: Conventional Barrier

Option 2: Perforate & Squeeze Barrier

How do we calculate well leak rate?

Option 3: Environmental Barrier

Increased leak probability

Leak Characterisation – Leak Pathways

Figure not to scale

Leak Characterisation – Leak Evolution

Formation Leaks

Well Leaks

More frequent, multiple bubble streams across wide areal extent

- However, as accumulation depletes, bubble diameter and leak rate both decreases (evidence from surveys)
- Less frequent bubbles / bubble streams, sourced more locally
- However, as well barriers degrade, or pressure recharge occurs, leak rate may increase until eventual wellbore collapse

Leak Characterisation – Modelling

Key Metric How much methane is released into the

atmosphere?

Atmospheric Emissions

Not All Leaks Are Delivered To The Atmosphere

Characterising the receiving environment is also important

Reproduced from Woods Hole Oceanographic Institution, J. Cook (2014)

Option 1: Conventional Barrier

Option 2: Perforate & Squeeze Barrier

Option 3: Environmental Barrier

So, how might we estimate the "cost to society" in our case study?

Increased leak probability

Case Study: Estimating Societal Cost

Unmitigated Well Leak Rate Assumptions

- \blacktriangleright All wells drilled before 2010 (1992 2008)
- > Wells are within 200 m of a seismic anomaly at Early Pleistocene level Thanks Dave Roberts (Well-Safe Wells TA) for your help!
- Leak flowrate estimated via Radial Flow Equation (non-compressible)

Assumptions:

10 m thick formation @ 500 m TVDSS 1 mD permeability of strung-out cement in C-annulus Negligible pressure loss through annular flow Annular fluid is density of base oil Temperature increase minimal 5.4 K Dynamic Viscosity (gas) RPT for methane 11.1 µPa·s

Where:

- q = volumetric flow rate
- k = permeability of porous medium
- h = thickness of flow zone
- pe = pressure at the external boundary (radius re)
- *pwf* = pressure at the wellbore (radius rw)
- μ = dynamic viscosity of the fluid

Ln(re/rw) = natural logarithm of the ratio of the external radius to the wellbore radius

* estimate from literature (95-99%), but with more wells leaking, dissolution power of water column will decrease

Option 1: Conventional Barrier

Option 2: Perforate & Squeeze Barrier

What is the value of this information?

How does it help us chose an appropriate option?

Option 3: Environmental Barrier

Increased leak probability

Case Study: Cost-Benefit Analysis

Is The Proposed Solution Proportional To The Problem?

Societal Cost £8.08 mm

Does the cost of the isolation option for biogenic gas leakage remain beneath a "grossly disproportional" threshold?

Case Study: Cost-Benefit Analysis

Is The Proposed Solution Proportional To The Problem?

Societal Cost £8.08 mm

	Operational Cost (£)	Operational Cost (£) vs. Societal Cost (£)	Cost Difference (£)
Option 1: Conventional Barrier	£20.13 mm	Cost of Mitigation Measure Benefit Cost of measure disproportional to benefit	+ £12.05 mm
Option 2: Perforate & Squeeze Barrier	£11.14 mm	"Grossly Disproportional" Threshold Benefit Cost of Mitigation Measure between benefit and cost of measure	+ £3.06 mm
Option 3: Environmental Barrier only	£6.21 mm	"Grossly Disproportional" Threshold Benefit Benefit outweighs cost of measure	- £1.87 mm

Case Study: Cost-Benefit Analysis

Is The Proposed Solution Proportional To The Problem?

Societal Cost £8.08 mm

	Operational Cost (£)	Operational Cost (£) – Societal Cost (£)	Cost Difference (£)
Option 2: Perforate & Squeeze Barrier	£11.14 mm	"Grossly Disproportional" Threshold Benefit Cost of Mitigation Measure between benefit and cost of measure	+ £3.06 mm
Option 3: Environmental Barrier only	£6.21 mm	"Grossly Disproportional" Threshold Benefit Benefit Benefit outweighs cost of measure	- £1.87 mm

Should leak rate modelling form part of the decommissioning planning process?

(As a means to deliver cost-effective well abandonment)

Proactive Abandonment Planning

Suggested Workflow & Data Gathering Opportunities

Phase 11: Post-Decom Monitoring
Conduct further monitoring beyond 3 years

Conclusions

All. Rocks. Leak.

Leak characteristics vary – key metric is the volume reaching the atmosphere and impacting society

Opportunities

Cost-Benefit Analysis

Mindset

Leaks can be modelled and sites monitored – we should leverage existing opportunities to gather data

Calculating the "cost to society" is a valuable metric for justifying a solution which is proportional to the problem in terms of cost/risk reduction

This method requires a change of mindset and an acceptance that there is a place for pragmatism

OUR VISION

To be the trusted full well life-cycle partner of choice

Thank you!

Any Questions?

Well-Safe Solutions Ltd

C4 Building, Gateway Crescent, Gateway Business Park, Aberdeen, AB12 3GA T: +44 (0) 1224 548 400 E: info@wellsafesolutions.com

Copyright © 2024 Well-Safe Solutions Ltd.