OPUS by NOV

Applying BAT/BEP to optimise production & reduce environmental impact

Stewart Esslemont, Senior Engineer 7th of November 2023

Completion & Production Solutions

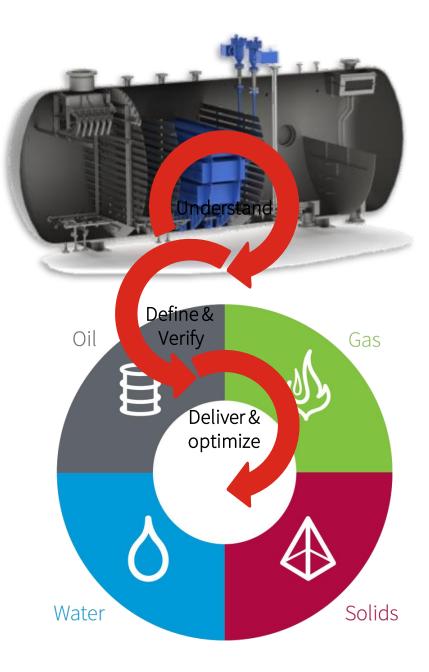
nov.com/wspbrownfieldsolutions

OPUS by NOV

What is BAT/BEP?

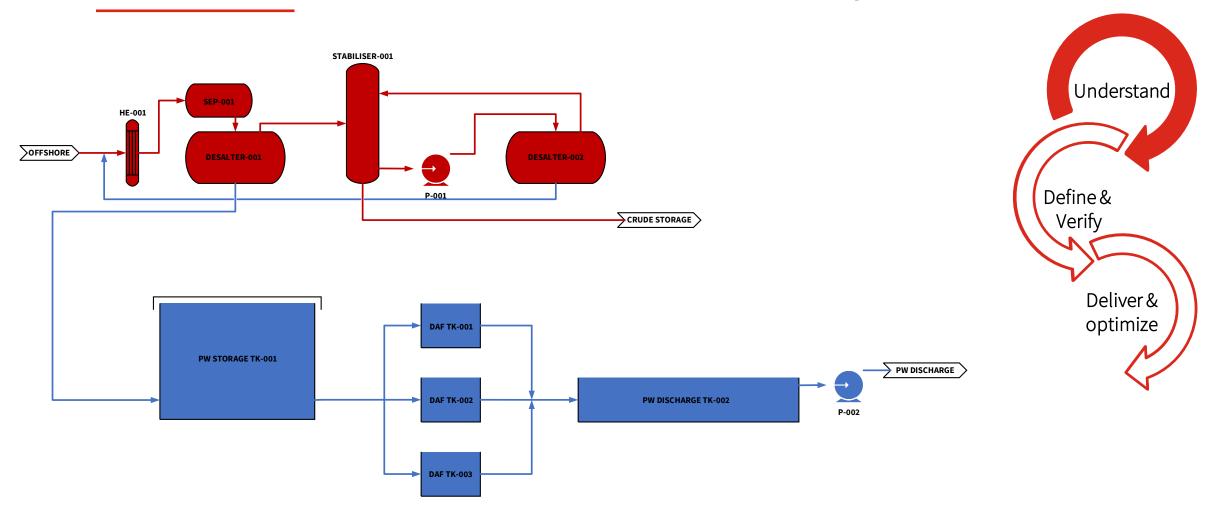
BAT – Best Available Techniques

• The latest stage of development (state-of-the art) processes, facilities or methods of operation which indicate the practical suitability of a particular measure for limiting discharges, emissions and waste.


BEP – Best Environmental Practice

• The application of the most appropriate combination of environmental control measures and strategies.

Ref: OSPAR Convention


The OPUS by NOV BAT/BEP Approach

• Apply multi-disciplined expertise to troubleshoot challenges or weaknesses in process systems and identify opportunities for performance optimization

Challenge

Reduce the environmental impact of a mature onshore oil processing terminal

The Operators Pain Points

Collaborative discussions developed an understanding of the underlying issues

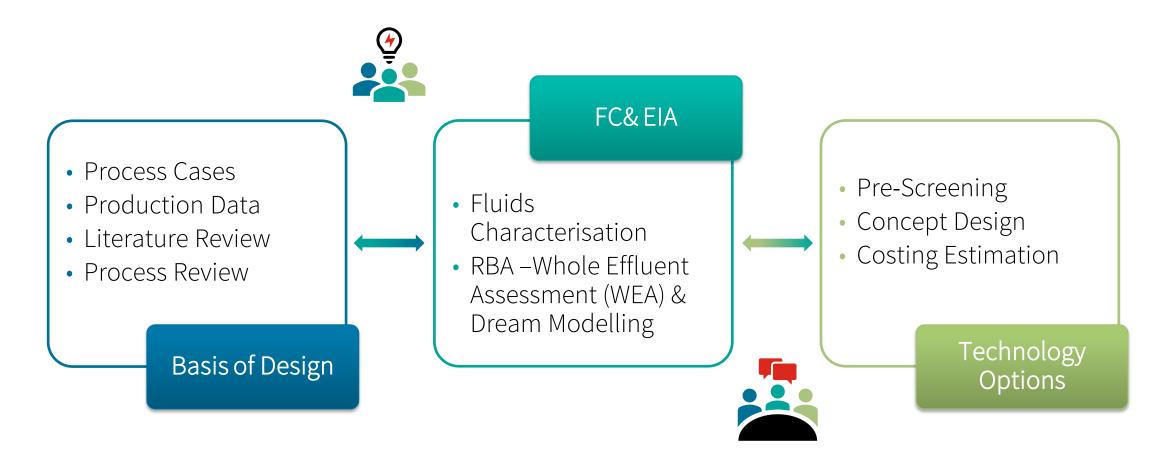
Outdated Process Design

Modern Emission Targets

Antiquated Process Equipment

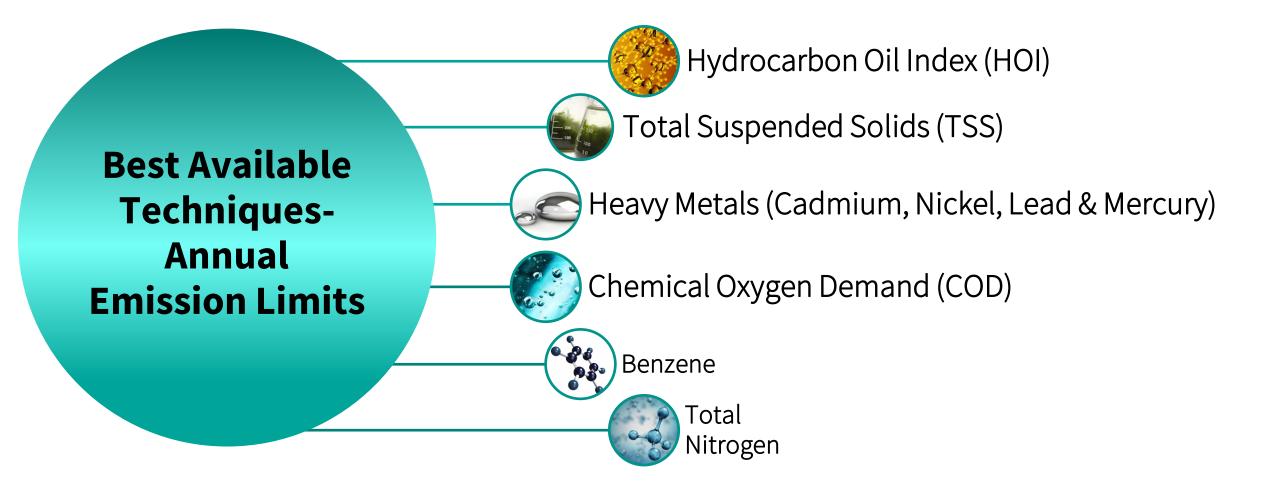
Limited Timeline

CAPEX / OPEX Concerns

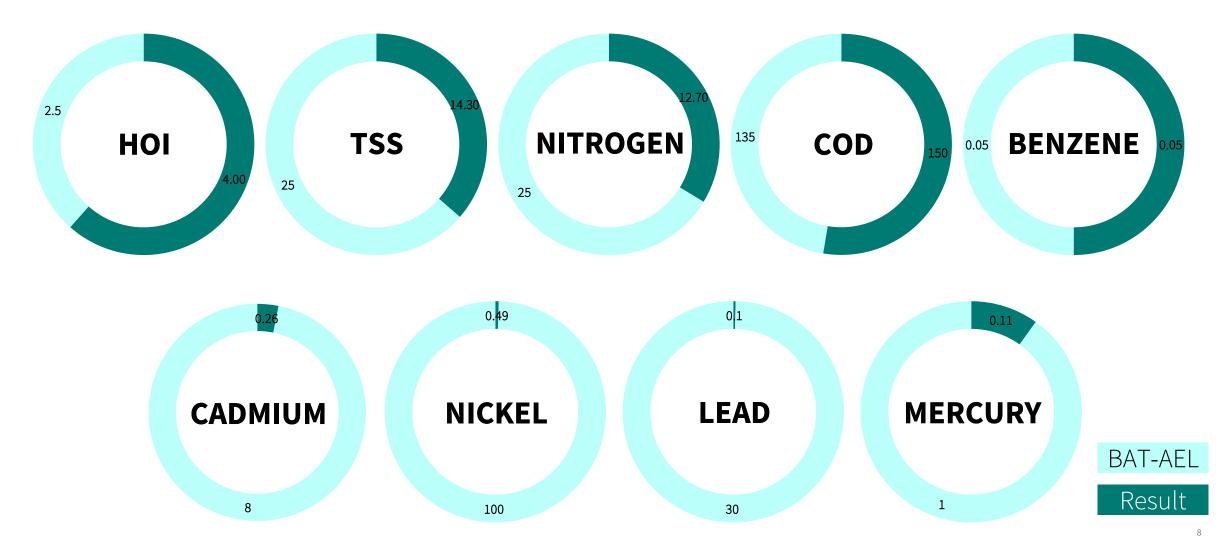

Defining the Approach

Identifying ways to overcome the underlying issues, defined the projects phases

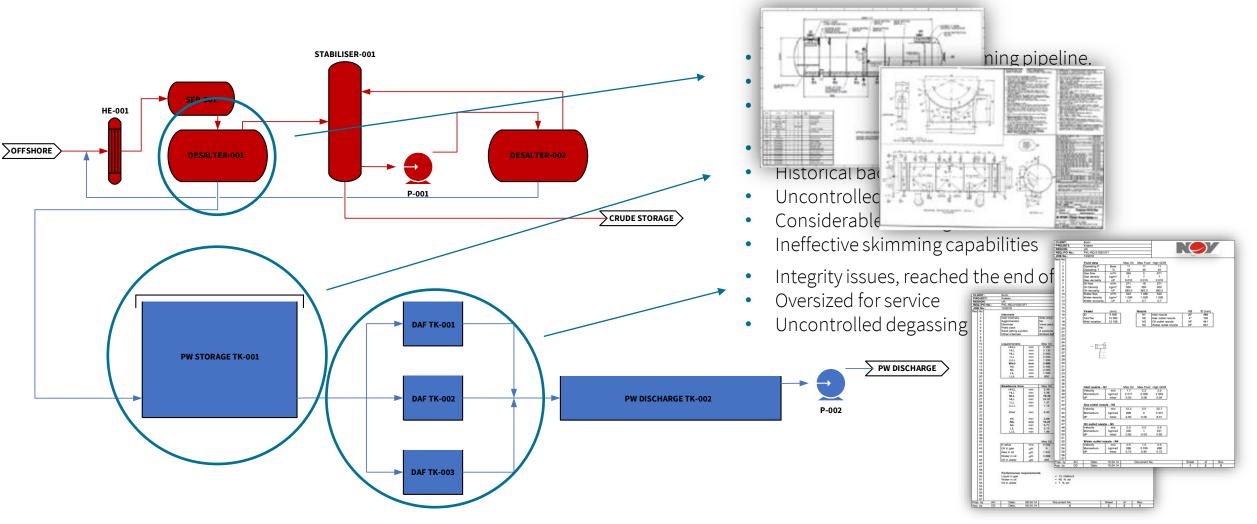
Design	 Basis of Design 			
Emissions	Fluids Characterisation (FC) & Environmental Impact Assessment (EIA)			
Equipment	 Overall Assessment of Technology Options 			
Timeline	 Phased Upgrade Approach 			
Economics	 Cost Benefit Analysis (CBA) 			


Overlapping Project Phases

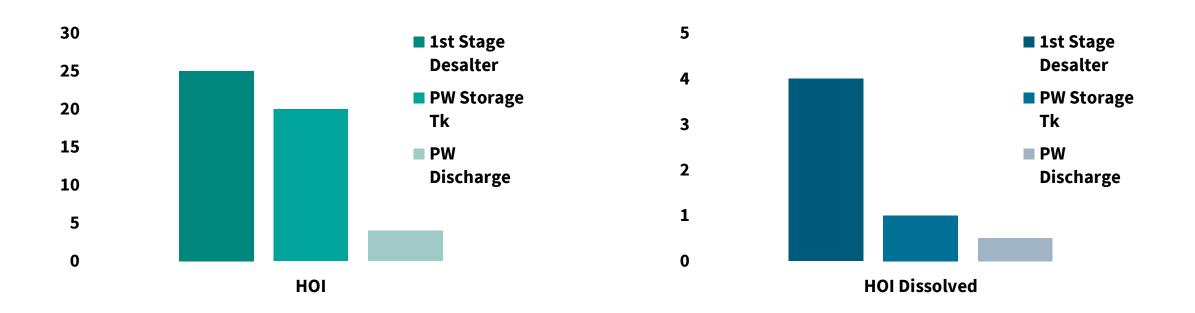
Key stages of each phase kicked off simultaneously to share the outcomes


Understanding the Regulations

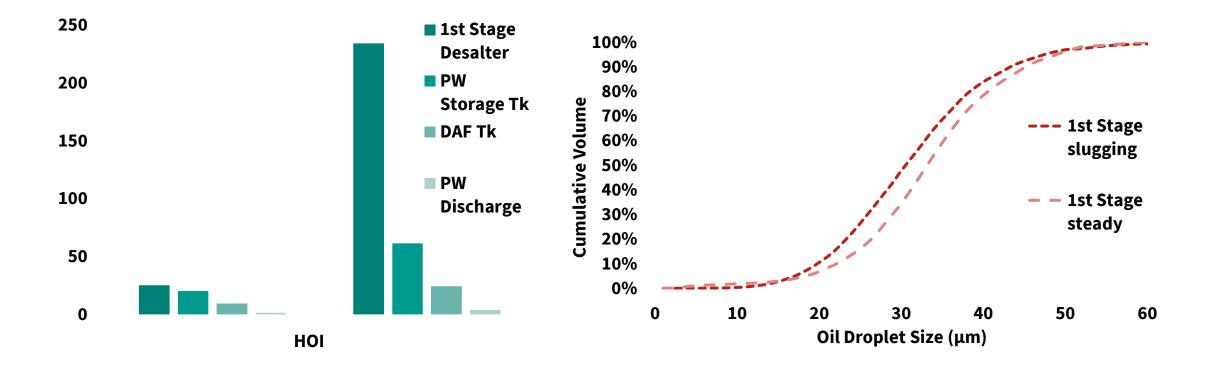
Defined as BAT-AELs, with an emphasis on operating a BAT-designed plant to comply


Assessing the current PW Discharge

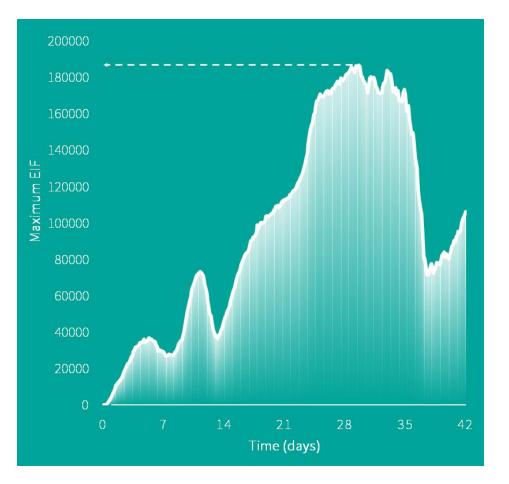
Annual results revealed that only HOI, COD and Benzene were above limits

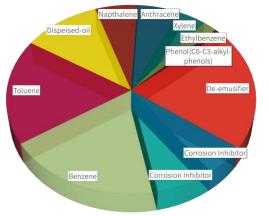

Process Engineering Review

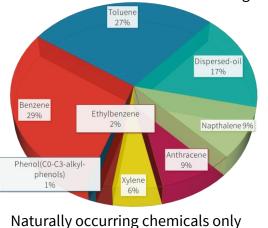
Investigating the operating conditions revealed that the process required improvement

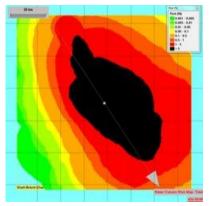

FC – Baseline Operating Conditions

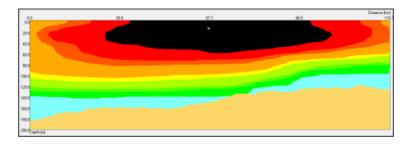
As the DAF Tanks had to be removed from service, the complete process was mapped


FC – Complex Operating Conditions

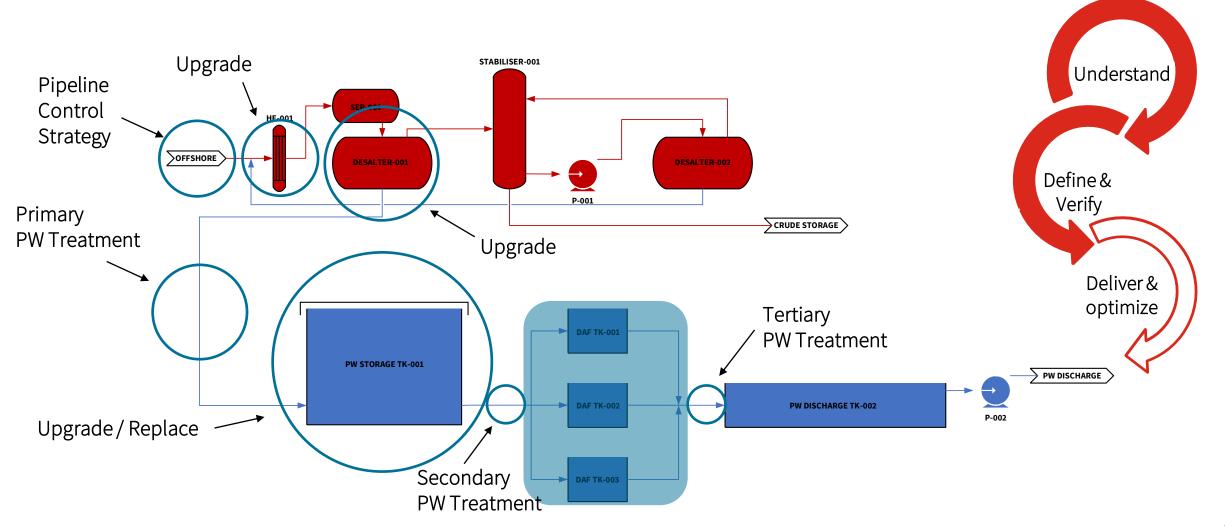

Capturing data during water slugs, provided an understanding of the impact


EIA – RBA WEA & DREAM Modelling


Evaluating the discharge at the component level



Produced water substances contributing to overall risk


Maximum risk of whole effluent

Transect through maximum risk of whole effluent

Proposed Locations for Optimisation

The combined findings determined the locations for optimisation

Basis Of Design

The locations selected were specific to the issues identified during the data collection

- Pipeline Control Strategy
 - Reduce the water content of Offshore Crude Export.
 - New pigging strategy, more frequent pigging.
- Upgrade Incoming Heat Exchanger
 Waste heat recovery options.
 - ≻New Heat exchanger U/S of 1st Stage Desalter.
- Upgrade 1st Stage Desalter
 - >New Electrostatic grids, to prevent routine shorting.
 - >New internals to enhance separation.
 - > New internals for solids removal.
- Primary PW Separation Technologies
 - ➤To reduce the dispersed oil content of water in PW Storage Tank.
 - ≻To Degass the PW, reducing emissions to air.
 - > To remove solids from PW stream, reducing bacterial impact.

- PW Storage Tank Upgrade / Replace
 New oil skimming design.
 - ➢ Replace with alternative or new tank, of a more suitable size.
 - ≻Remove open drainage system tie-in
- Secondary PW Separation Technologies
 To reduce the dispersed oil content and TSS of water to polishing technology requirements.

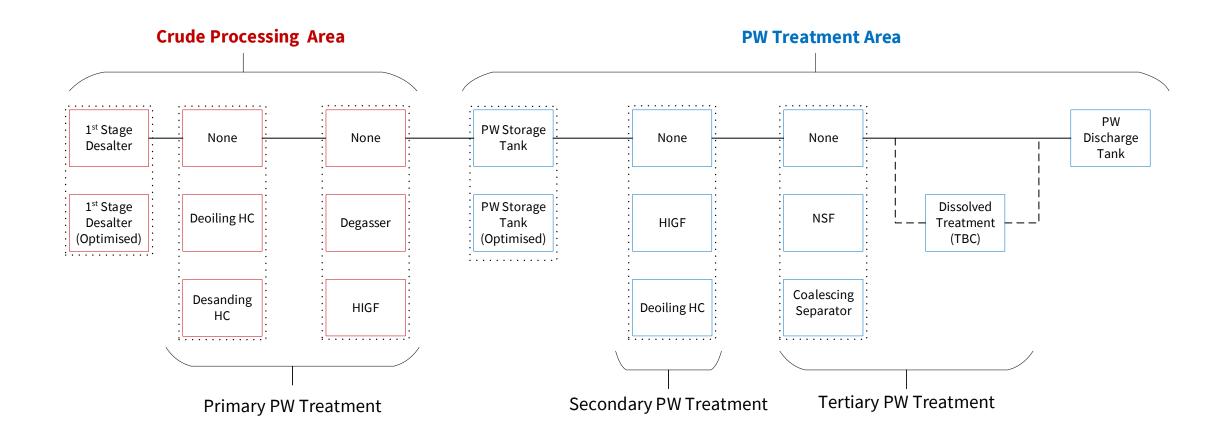
Tertiary PW Separation Technologies

- ➤ To reduce the dispersed oil content and TSS of water to discharge requirements.
- >To reduce the dissolved components of the water to discharge requirements.

Pre-Screening

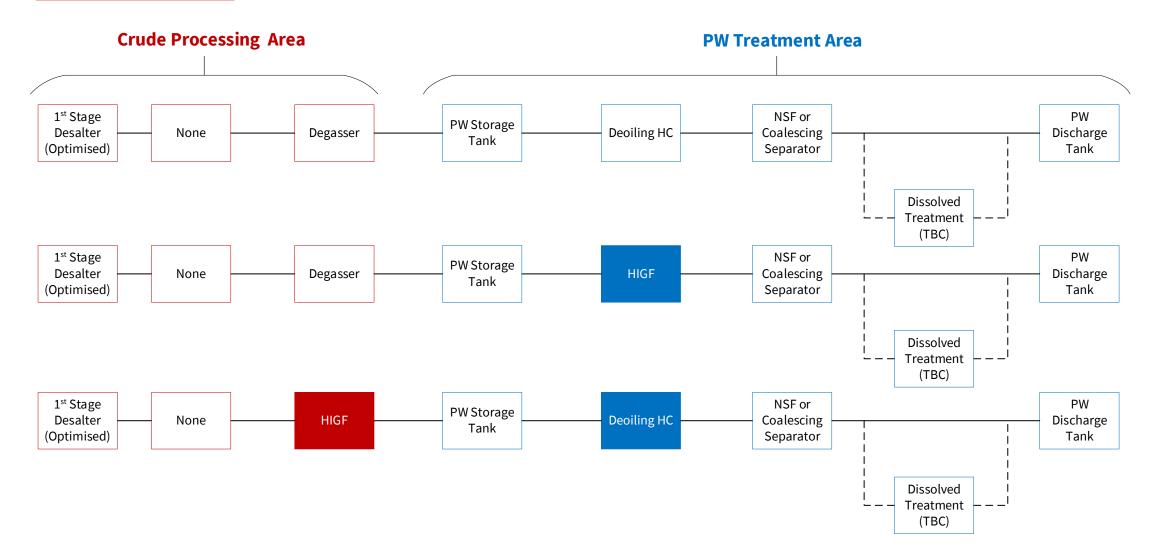
SUP	GEMANAGEMENT	HEA	TING OF FLUIDS				
JUR	Improvements to offshore processes						
		Feed Pre-heater – Current Heat Exchanger new controls					
•	Piggingstrategy review	Any waste heat recovery option					
•	New Pig Launchers	New Heat exchanger					
•	New pressure vessel D/S pig receiver (Slugcatcher)						
•	New pressure vessel D/S 1 st Stage Desalter (Slugcatcher)						
•	New tank D/S 1 st Stage Desalter (Atmospheric Tank)						
1 st St	age Desalter Upgrade						
•	New electrostatic grids						
•	New Internals Design						
•	New LCV type/locations						
OPT	ONS FOR REPURPOSING OF VESSELS FOR STORAGE / SURGE MANAGEMENT	PWS	STORAGETANK				
•	Mothballed Side draw accumulator vessel	New skimming devices					
•	Fresh water tank 1 of 2	•	New outlet pipework design				
PRIM	ARY (PWT) SEPARATION VESSELS/EQUIPMENT	SECONDARY PWT SEPARATION VESSELS/EQUIPMENT					
•	API Separator	• CFU					
•	PlatePackSeparator	ADEG Degasser					
•	DeoilingHydrocyclone	• HIGF					
•	Deoiling centrifuge	DeoilingHydrocyclone					
•	ADEG Degasser						
•	HIGF						
•	CFU						
TER	TARY PW TREATMENT/POLISHING	TERTIARY PW DISSOLVED HYDROCARBON & HEAVY METALS TREATMENT					
•	Media Filtration – Nutshell filtration	•	Activated carbon	٠	Fixed Bed Biological System		
•	Ceramic filtration	•	Osorb	•	Suspended Bed Biological System		
•	Coalescingseparator	•	MPPE	•	Organoclay (PS85)		
	5 1	•	Biofilter package	•	Heavy Metals - Chemical Precipitation		
		•	Reed bed		······································		
SOL	DSMANAGEMENT	CHE	MICALINJECTION				
•	Vessel Integrated Solids Removal Technology	Biocide review of operation philosophy					
•	Solids cyclones	Chemical injection options (Demulsifies, Deoilers, scavengers etc)					
•	Disk-stacked Centrifuge	,,,,,,,					

Pre-Screening


NAME: DEOILING HYDROCYCLONE	TYPE:	PRIMARY PWT EQUIPMENT			ID:	1				
 Description: Deoiling Hydrocyclones operate under the principle of centrifugal separation and hydrocyclone liners to attain the required throughput capacity is housed within a press and maintenance requirements. The produced water enters the liners tangentially; which due to the internal geometry inducing separation forces several thousand times greater than gravity. As the oil-contat forces whilst the lighter (oily phase) is drawn to the core by centripetal force. The dense end of the cyclone, whilst the lighter fraction consisting of the less dense, oily, phase exit Deoiling of produced water with hydrocyclones is OSPAR 'Best Available Technology'. can be achieved via: Multiple parallel units (different sizes) with active and blank liners – this may require Multi-compartment (auto-isolated) design sized to handle full flow range Collection vessel upstream of hydrocyclones to manage surge – pre-separation require Recycle loop to maintain flow during turndown - uses a pump to recirculate flow core 										
vantages: Disadvantages:					SEMI-QUANTITATIVE PRE-SCREENING					
Uses system pressure to drive the process	,	 Reject flow needs to be stable and consistent Automatic PDR control system required – regular checks on dP/flow and PDR behaviour 			+/-Score	Criteria	+/-Score			
Robust with no moving parts					+/-5001e	Ecological	+/-SCOIE			
 Hydrocyclones can efficiently remove oil droplets down to 10-20 microns, some lower. 		vn capability – requires careful desigr	n, min flow/recycle, partitioning	H&S Technical Risk		Maintenance				
 lower. Treat up to 2000mg/l OIW at inlet down to around 50mg/l Susceptible to fouling – solids filter upstream and regular backwashing required 						Waste				
 Small footprint and lightweight construction 			ar backwasningrequired	Operational Risk		Public Relations				
 Small Hootprint and lightweight construction Screening Comments: Capital cost is £ high-level cost for 2 x 36" (turndown and flow variability is a big cond Low OPEX Low HSE – low exposure to volatile hydrocarbons 		avily dependent on droplet size		Extreme negative d Major negative b		Negligible positive 0 Minor positive 2 Major positive κ	Extreme positive o			
LOCATION: D/S DESALTER COST: £ OPEX:	£	BENEFIT / PERFORMANCE:	%	Conclusion:	DO/DON	0T takefor	ward			

Pre-Screening

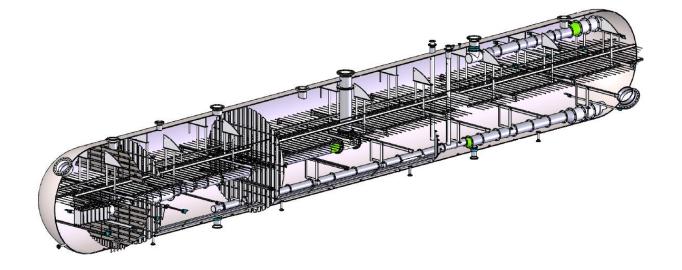
SURGEMANAGEMENT	HEATING OF FLUIDS				
Improvements to offshore processes	 Feed Pre-heater – Current Heat Exchanger new controls ✓ 				
Piggingstrategy review	Any waste heat recovery option				
New PigLaunchers	New Heatexchanger				
New pressure vessel D/S pig receiver (Slugcatcher)					
New pressure vessel D/S 1 st Stage Desalter (Slugcatcher)					
 New tank D/S 1st Stage Desalter (Atmospheric Tank) 					
1 st Stage Desalter Upgrade					
New electrostatic grids					
 New Internals Design ✓ 					
New LCV type/location					
OPTIONS FOR REPURPOSING OF VESSELS FOR STORAGE / SURGE MANAGEMENT	PW STORAGE TANK				
Mothballed Side draw accumulator vessel	New skimming devices ✓				
Freshwatertank1 of 2	 New outlet pipework design ✓ 				
PRIMARY (PWT) SEPARATION VESSELS/EQUIPMENT	SECONDARY PWT SEPARATION VESSELS/EQUIPMENT				
API Separator	◆ CFU				
Plate Pack Separator	ADEG Degasser				
 Deoiling Hydrocyclone ✓ 	● HIGF ✓				
Deoiling centrifuge	 Deoiling Hydrocyclone ✓ 				
 ADEG Degasser ✓ 					
● HIGF ✓					
•—— CFU					
TERTIARY PW TREATMENT/POLISHING	TERTIARY PW DISSOLVED HYDROCARBON & HEAVY METALS TREATMENT				
 Media Filtration – Nutshell filtration ✓ 	Activated carbon Fixed Bed Biological System				
Ceramic filtration	Osorb Suspended Bed Biological System				
 Coalescing separator ✓ 	MPPE Organoclay (PS85)				
	Biofilter package Heavy Metals - Chemical Precipitation				
	Reed bed				
SOLIDS MANAGEMENT	CHEMICALINJECTION				
 Vessel Integrated Solids Removal Technology 	 Biocide review of operation philosophy ✓ 				
 Solids cyclones ✓ 	 Chemical injection options (Demulsifies, Deoilers, scavengers etc) 				
Disk-stacked Centrifuge					


Designing Process Flow Diagrams

Once pre-screened, the preferred technologies were incorporated into PFDs to rank as concepts

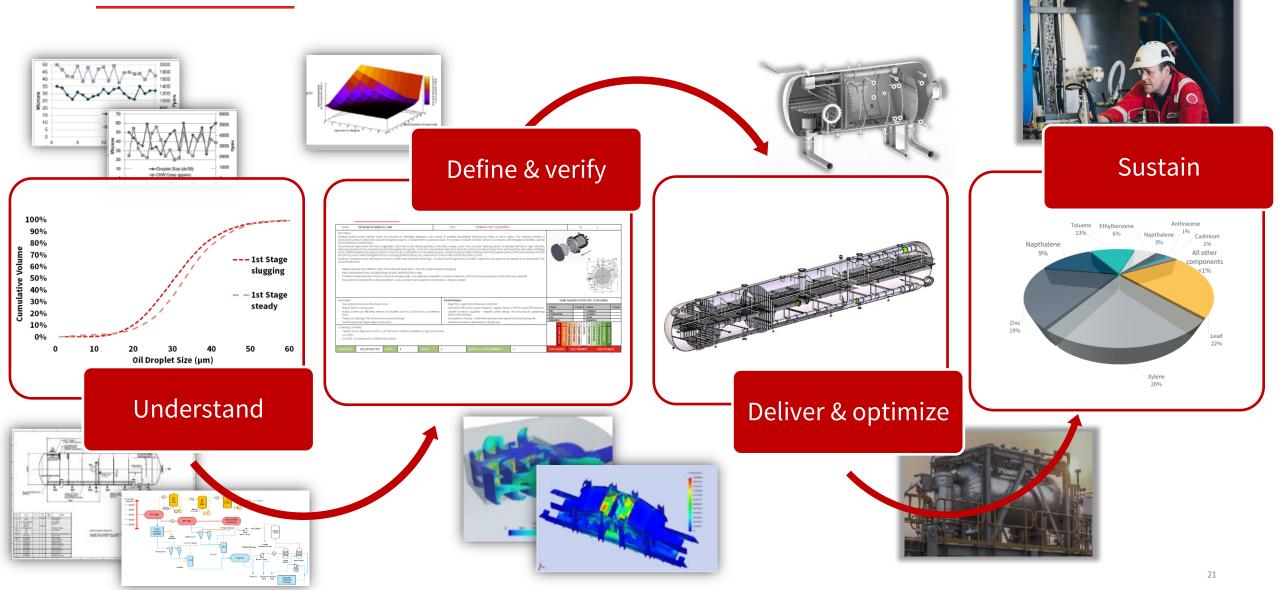
PFD Cost Benefit Analysis Rankings

The concepts were ranked on performance vs costs and 3 were selected for Pre-FEED evaluation



The next steps

One key upgrade is complete 🗸 Technology trials will confirm the final design


Optimised 1st Stage Desalter:

- Changed from vertical to horizontal flow arrangement.
- Inlet distribution header to distribute fluids across the length and width of the vessel.
- Oil outlet manifold and water manifolds located across the full length of the vessel at the top and bottom, respectively.
- Water outlet nozzles re-routed to minimise outlet velocity and associated impact on volume utilisation during water slugs.
- Integrated solids removal technology to be installed next shutdown.

The OPUS by NOV Approach

nov.com/wspbrownfieldsolutions wellstreamprocessing@nov.com