Seismic Acquisition Without Active Sources

Stian Hegna

A Clearer Image | www.pgs.com

Outline

- Introduction
- Method
- Data Examples
- What Next?

Source Depth:	10m
Receiver Depth:	250m
Receiver Spacing:	6.25m
Number of Receivers:	641 (4,000 m)
Reflector Depth @ Source:	750m
Reflector Dip:	5°
Reflection Coefficient:	1
Velocity:	1,500m/s

Interferometry Approach

3

Cross Correlation Cube

Receiver in Source Location w/ All Receivers

Reference – Earth Model

Receiver in Source Location w/ All Receivers

Cross Correlation Approach

Source Depth:	10m
Receiver Depth:	10m
Near Offset:	240m
Receiver Spacing: 6.25m	
Number of Receivers:	283
	(1763 m)
Reflector Depth @ Source:	750m
Reflector Dip:	5°
Reflection Coefficient:	1

Receiver at Streamer Front w/ All Receivers

Reference – Earth Model

Acoustic Wavefield Generated by a Vessel

Towed Streamer Configuration 16 x 100m

Migrated Stack Comparison

Source: Ramform Hyperion

Source: Airguns

Streamer Test Data

Streamer Length	500 m
No. Channels	40
Streamer Depth	15 m
Near Offset	~110m
Source	15m long vessel
Source Depth	~2.8 m

Streamer Test Data – 2D Migrated Stack

Source: Small Vessel

Source-Over-Cable Survey, Barents Sea

Raw recorded hydrophone data

Nearest Hydrophone Channel

Iteration 1

stern of the vessel.

distance (m)

Residuals after Iteration 1 – Iteration 2

stern of the vessel.

Residuals after Iteration 2 – Iteration 3

stern of the vessel.

Residuals after Iteration 9

Input Data from Streamers 8 – 12

Residuals after Iteration 9

The Sound of Sanco Swift

Inline directivity

Crossline directivity

The Sound of Sanco Swift

Inline directivity

Crossline directivity

11

CMP gathers – 642 fold

Source: Swift

12.5m trace spacing, 2ms sample rate, 6.25m spacing between CMP gathers

CMP gathers – 642 fold

Source: Swift

12.5m trace spacing, 2ms sample rate, 6.25m spacing between CMP gathers

Time-slice through CMP gathers at 0.5 s

Source: Sanco Swift

NMO Stack

NMO Stack

NMO Stack – No Active Source

NMO Stack – No Active Source – Octave Panels

Source: Sanco Swift

What next?

Ocean bottom cables / nodes?

✓ See presentation in the Seismic Acquisition – OBN session on Thursday June 8th at EAGE 2023

- Utilizing the crossline directivity?
- Applications on conventional data?

Acknowledgements

Thanks to AkerBP (Lundin Energy) and its partners DNO Norge and Petoro in PL1083 for permission to show the results from the Barents Sea test

Many thanks to PGS for supporting this work

