

BRAG Classification Methodology for continuous CO₂ stream impurities for full chain CCS systems

30th September 2025

What is the Problem?

- A CCS network may contain:
 - Different emitters,
 - Different CO₂ sources,
 - Different capture processes
 - ...therefore, producing different levels of impurities
- This means an impurity may be more significant to one emitter than another
- CO₂ stream may contain up to 80 different impurities
- Monitoring all may be costly and unstable to control

What is the Solution?

- Pace have developed a system to classify and categorise impurities within a CO₂ stream using a traffic light system (BRAG):
 - Black (High-likely Impact)
 - Red
 - Amber
 - Green (Low-unlikely Impact)
- BRAG is being implemented during the design stage of the project, done through a multidisciplinary workshop.
- The goal is to help emitters understand: What monitoring is needed & What control requirements they must follow.
- This approach avoids adding excessive control complexity.
- This can reduce expense from avoiding complicated monitoring systems.
- BRAG can set the premise of a safe-guarded CCS system operation on a case-by-case basis (at the emitter side).

What is the Solution? – BRAG Categories

	Colour	Level	Description	Type of Monitoring
В	LACK	Safety Critical	Detrimental to short term integrity of the system downstream the capture plant.	Continuous online monitoring
				Real time analysis sent to the control room
				Automated alarms at upper limits
				Automated closure of XV valve at "trip" points
R	ED	Important	Critical to short term operability and detrimental to long term integrity of the system downstream the capture plant.	Continuous online monitoring
				Real time analysis sent to the T&S control room
				Automated alarms at upper limits
A	MBER	Basic	Non-critical to operability however required to be logged (i.e., daily). This is due to possible operational upset over a prolonged time period.	Compositional analysis onsite
				Results communicated to the T&S control room
G	REEN	Periodic	Non-critical to operability and long-term integrity however required to be logged (i.e., quarterly) for housekeeping records.	• Full compositional analysis offsite
				Results communicated to the T&S control room

How do we apply it? - BRAG Assumptions

For each emitter, a design must be known or assumed:

- 1. Emitter
- 2. Capture Technology
- 3. Dehydration Technology
- **4.** Facility (Constant operator presence or Automated)
- **5.** Transport System (Pipeline or Ship)
- **6.** CO₂ Phase

How do we apply it? - Decision Tree

How can an excursion take place?

Process change or unit/equipment failure.

Impurity margin to specification limit?

If there is a significant margin or slow excursion reduces concern.

Prior indicators?

Upstream indicators than may initially signal excursion.

Impurity interaction?

Managing one impurity may indirectly manage the risk of another.

Cost effectiveness & measurability?

Can't monitor what can't be measured. Costly to monitor some impurities, hence must add significant value to do so.

Thank You

Babajide Balogun babajide@paceccs.com