

From Grids to Brines: Small Tweaks, Big Shifts in CO₂ Storage

Mark Lakos – Rock Flow Dynamics

SPE EuropEC 2025, Vienna
SPE-225574-MS
Numerical Investigation of Geological CO2 Storage
– Sensitivity Study on Saturation Functions

Trapping mechanisms

Structural trapping

☐ Driven by geology

Dissolution and mineral trapping

- □ Driven by solubility
- □ Driven by mineralization

Residual trapping

□ Driven by hysteresis

Time and Storage security!

What to consider?

Numerical parameters

How big is too big and how small is small enough?

Reservoir characterization

Where do we want to inject?

What fluids do we have? What are their properties?

What rocks do we have?

Cell Size Sensitivity: How small is small enough? 20 m vs 200 m

CO2 Plume

20 m cell size

Water Density

20 m cell size

Trapping Mechanisms

CO₂ Trapping Mechanisms after 1000 years

CO2 Plume

Trapping Mechanisms

CO₂ Trapping Mechanisms after 1000 years

CO2 Plume

Carbonated* brine

t = 0 years

t = 500 years

t = 1000 years

Undersaturated* brine

Trapping Mechanisms

CO₂ Trapping Mechanisms after 1000 years

Conclusions

- 1. Too large grid cells can mask the physics and may lead to misinterpretation of CO_2 solubility and trapping mechanisms.
- 2. Understanding your reservoir water especially salinity is key to assess how dissolution trapping will be contributing to the overall trapping.
- 3. Relative permeability curves both drainage and imbibition drive the path of the plume and impact where, and how the injected ${\rm CO}_2$ is stored.

