

Chemical Free Scale Prevention Tool for Application in Geothermal Wells and Surface Facilities

Erin Temple – Oilfield Chemist ClearWELL Energy

Contents

- What is scale and why is it a problem?
- How to deal with scale deposition
- Using an electromagnetic device to prevent scale deposition
- Field Cases from Oil and Gas Sector
- Summary

What is scale and why is it a problem?

- What is scale?
 - Scale is a hard, adherent deposit of inorganic mineral compounds that are present in water.
 - It may consist of one or more types of minerals deposited along with other debris (e.g., sand, organic deposits etc).
- How does scale form?
 - Precipitation of minerals from an aqueous solution is governed by:
 - Thermodynamics temperature, pressure, composition
 - Kinetics time dependency of a physical or chemical reactions
 - Hydrodynamics fluid flow conditions (e.g. turbulent, laminar)

The Scale Formation Process

What is scale and why is it a problem?

- The formation of scale can occur anywhere in the production system from the formation, surface facilities and re-injection wells.
- The formation of scale can cause the following problems:
 - Blocking of perforations or near wellbore area.
 - Restrictions to tubing diameter.
 - Damage to downhole equipment such as artificial lift or safety equipment.
 - Reducing the efficiency of surface equipment such as separators, filters and heaters.
 - Re-injection wells including pore blocking of reservoir.

Common scale types $C_a(HCO_3)_2 \rightleftharpoons C_aCO_3 + CO_2 + H_2O$

 $Ba^{2+} + SO_4^{2-} \longrightarrow BaSO_4$

Common types of inorganic scale: CaCO₃ (calcite): Oilfield and Geothermal BaSO₄ (barite): Oilfield CaSO₄.2H₂O & CaSO₄ (gypsum & anhydrite): Oilfield FeCO₃ (siderite): Oilfield and Geothermal Heavy metal sulphides e.g., FeS (several forms), Pbs & ZnS: Oilfield and Geothermal

NaCl (salt): Oilfield

Silica and metal-silicates: Geothermal

How to deal with scale deposition

- Traditionally the energy sector has relied on either:
 - Scale inhibitors
 - Scale dissolvers
 - Mechanical removal
- Although all can be effective and practical solutions, they can present challenges:
 - Environmental regulations
 - High temperatures
 - Expensive equipment either CAPEX or OPEX
 - Well Interventions

What is the alternative?

Using an electromagnetic device (EMD) to prevent scale deposition

- The propagation of an electromagnetic field (EMF) from a metallic surface changes the energy of the system, impairing heterogenous nucleation, (surface) and favouring homogenous nucleation (bulk).
- Common inorganic scale types contain diamagnetic ions e.g. Ca²⁺ & Ba²⁺ which are repelled by a magnetic force.

Using an electromagnetic device (EMD) to prevent scale deposition

- Studies have shown that the presence of an EMF changes the crystal phase of calcite resulting in crystals that are mobile and wont adhere.
- The presence of an EMF generates lots of tiny crystals in the fluid.
- Crystals are washed away in the flow stream.
- Doesn't remove pre-existing scale.

Advantages of EMD's over conventional methods

- The EMD is connected at the surface (wellhead) without intervention to the well or any associated downtime.
- EMD can propagate an EMF to parts in the well not reachable by chemicals e.g. pumps, if no downhole chemical line in place/scale deposition below injection level.
- EMD can be fitted and monitored remotely avoiding logistical issues with chemical deployment to site & reducing carbon footprint.
- Geothermal wells are typically higher in temperature and have more stringent environmental regulations making it difficult to qualify effective scale inhibitors.
- The use of corrosive chemicals in scale dissolver treatments can result in integrity issues and require well interventions.

Field cases with EMD in Oil and Gas production

- Two progressive cavity pumped (PCP) wells experiencing calcite scale resulting in equipment failures every 6-8 months.
- Both wells are high watercut wells 80-90%.
- Following a trial with EMD, both wells more than doubled their run-life.
- Pumps were recovered scale free in both wells.

Field cases with EMD in Oil and Gas production

• The case below shows how effective an EMD is to protect a sand screen from calcite.

EMD Installation

• EMD is particularly effective on downhole artificial-lift equipment where scaling occurs on the outside of the equipment.

Well type: Rod pump well (pump depth – 2110m) Normal run-life: 5-6 months before pump screen plugged with scale.

After 5 months of continuous production, it was reported that no scale had been found on the pump screen.

Summary

- Scale deposition in geothermal wells and surface facilities is a common problem that will effect most plants.
- Traditional scale control techniques can be challenging to apply in the geothermal sector.
- EMD's have been used successfully in the oil and gas sector for many years.
- EMD's are well suited to geothermal wells operating with artificial lift systems.
- The devices are easily installed and can help reduce downtime and well interventions to remove scale deposits.

ClearWELL

Thank you for listening

