

GEOTHERMAL 2023

REALISING THE AMBITION

MULTIPHASE DRILLING FLUID UTILIZING CCS ON GEOTHERMAL OPERATIONS

Rick Doll – Adrilltech Operations Manager Feb 2023

CCS- GEOTHERMAL DRILLING APPLICATIONS

Geothermal Drilling with Constant Circulating System (CCS) in Conjunction with Multiphase Fluids

Enables the reduction of NPT in Geothermal Drilling:

- Combined systems have been used in Volcanic Ash/Tuff drilling sections
 Pressure
- Mitigate Total losses in fractured formations
- Mitigates Stuck Pipe/Lost BHA's from hole collapse
- Reducing Connection Times with Multiphase flow
- Good ECD control
- Allows for improved BHA Temperature Control

MULTIPHASE DRILLING FLUID FOR GEOTHERMAL OPERATIONS

Drilling Fluid	Description	Application	Remarks
Air	 Air is the continuous phase 	 Extremely low formation pressure Non water-bearing formations 	 May require large air equipment spread Higher annular velocities can be expected
Foam/Stiff Foam	 A mixture of water or polymer slurry with foaming agents is added to compressed air stream 	 Large annular spaces (washouts, vugular formations) Macro fractured formations Water-bearing formations 	 Less volumes of water required than single phase fluids Mist pump required to achieve stiff foam Improved well bore stability Improved cuttings carrying capacity
Aerated Mud	 Liquid based Drilling fluid is the continuous phase Air is added to reduce the hydrostatic pressure 	 Weak Formations Unstable formations with subnormal pressure (6 to 8 ppg (0.72-0.96 sg) EMW 	 Maintain Higher density Fluids No Mist pump required

CCS SYSTEM OVERVIEW

- The CCS system is a DNV certified process that allows the pressure isolation of the rigs top drive via diverting flow through a manifold to a drill pipe sub that has an internal ball valve and side entry port. Thus, enabling the continued circulation of drill pipe whilst making a drill pipe connection.
- Subs are made up to the top of each drill pipe stand that is required to drill a predetermined well section, .
- Subs can be manufactured to fit desired drill pipe tool joint from 4" to 6 5/8".

MULTI PHASE FUID WITH CONTINUOUS CIRCULATION

CCS - Flow Schematic & System Overview

GEOTHERMAL SIMULATED NEAR BORE TEMPERATURE REDUCTION

- Left diagram drilling volcanics 3m/hr 8.5" reservoir section with water utilizing normal drilling connection procedures
- Right diagram drilling volcanic 3m/hr 8.5" reservoir section with water utilizing CCS on connections
- Results show that by using CCS

 a 35 to 40 deg C decrease in near
 well bore temperature.
 The reduced temp allows for longer
 use of mud motors and MVVD tools
 limiting high temp degradation to
 down hole tools

NON STOP DRILLER[©] - SUCCESSFUL OPERATIONS HIGH PRESSURE/HIGH TEMPERATURE MWD TOOLS SAVED

Assessed Hydrothermal Influx **350degC** at 60mbsf

Pumping

8-1/2"hole:

Influx Flow-in: 350degC x 200gpm at 60mbsf 38-114degC @ 600gpm 21-95degC @ 800gpm Annular BP: 40psi @800gpm x 100mbsf

12-1/4"hole:

Influx Flow-in: 350deg C x 200gpm at 60mbsf 26-74degC @1200gpm Annular BP: 20psi@1200gpmx100mbsf

Pumps Off

8-1/2"hole:

Influx Flow-in: 350deg C x 400gpm at 60mbsf Max 182degC @ 2min Max 212degC @ 3min

12-1/4"hole:

Influx Flow-in: 350deg C x 400gpm at 60mbsf Max 128degC @2min Max 168degC @3min Max 196degC @4min

IODP EXP 331 Deep Hot Biosphere wells

- LWD Specification for 8 ¹/₂"hole size BHA temperature rating = 175degC
- Worst conditions encountered during "no pumping" events while the hydrothermal fluid influx occurred upwards of 400degC

STAR ENERGY / SCHLUMBERGER IPM; MBC-1 INDONESIA 2017

Star Energy / Schlumberger IPM first well NSD MBC-1 in Indonesia, 2017

- Drilled 3 sections, 17-1/2", 12-1/4" and 8-1/2" section.
- WBM used for the 17-1/2" section with 2-phase drilling in 12-1/14" and 8-1/2" section
- A total of 1500m of open hole drilled with continuous circulation.
- No stuck pipe events.

STAR ENERGY / SCHLUMBERGER IPM; WWA-7 INDONESIA 2017

Star Energy / Schlumberger IPM Second well with NSD WWA-7 in Indonesia, 2017

- Drilled 3 sections, 17-1/2", 12-1/4" and 8-1/2" section.
- Single phase used for the 17-1/2" section with 2-phase drilling in 12-1/4" and 8-1/2" section
- A total of 2015m of open hole drilled with continuous circulation.
- No stuck pipe events.
- 7th Well on PAD, Deepest and fastest well drilled on pad by over 3 days and 500m deeper than previously been able to achieve.

STAR ENERGY / SCHLUMBERGER IPM; MBC-1 / WWA-7 INDONESIA 2017

Utilizing CCS allowed STAR ENERGY to accomplish the following:

- Drilling with stands, compared to drilling in doubles conventionally due to need to make connections one single off bottom to allow drill string movement.
- Reduced the overall connection time from 35-45 mins to10 mins, by eliminating need to excessively back ream prior to connection and reduce the time it takes to regain stable 2 phase drilling ratios.
- Substantial risk reduction of stuck pipe during connections, due to drilled solids drop out, or formation collapse due to cyclic pressure variations in the wellbore.
- No stuck pipe incidents.
- Allowed section to be drilled to planned TD. Previous well abandon with BHA lost in hole due to sever well bore instability.

SAE/ HALLIBURTON IPM; SMT-H2 INDONESIA

SAE/ Halliburton IPM first well NSD SMT-H2 in Indonesia, 2018

- Drilled 26" hole section with 2-phase drilling medium.
- Maintained constant circulation over whole section
- A total of 298m of open hole drilled with continuous circulation.
- No stuck pipe events.

SAE/ HALLIBURTON IPM; SMT-H2 INDONESIA

SAE/ Halliburton IPM Second well NSD SMT-F1 in Indonesia

- Drilled 2 sections 17-1/2" and 12-1/4" side.
- A combination of single phase and 2-phase fluids used in loss zones.
- A total of 1688m of open hole drilled with continuous circulation.

Thank You!

www.adrilltech.com

