

30 September 2025 – Chester Hotel, Aberdeen, UK

Restart of Injection Operations in CCUS Wells: Thermal Impacts and Well Design Considerations

Ruggero Trevisan

VP Europe - Altus Well Experts

Agenda

- Overview of CCUS Operations
- Challenges and Simulation Requirements
- Example simulations of transient Restart (or Start-up) period
- Wellbore integrity tubular and completion loads
- Conclusions and Objectives for Further Work

CCUS Well Design Challenges

- Pipeline flow condition as input
- Choke: Temperature boundary condition
- Phase behavior of fluid during flow
- Frictional pressure losses
- Heat transfer with formation
- Wellbore integrity:
 - Tubulars & Connections
 - Completion / Packers
 - Cement
- Transients versus steady-sate conditions
- Perforation: Pressure boundary condition
- Reservoir Injectivity

EOS Phase Envelope: CCUS Mixtures w/Impurities

Pipeline supply

CO₂ mixture flashing across choke - J-T temperature drop

Multiphase behavior throughout wellbore

Early life injection to depleted gas reservoir:

- low BHP
- gass acceleration near perf → downhole friction losses
- J-T temperature drop

Case Study: Transient Simulation of Well Restart

- Shut-in well following a period of steady-state injection
- 2. Restart of 2 MTPA CCUS operation into Depleted Gas Reservoir
 - Reservoir Conditions: 340 psi (23 bar), 200°F (93°C)
 - Pipeline Conditions: 1450 psi (100 bar), 40°F (4°C)
 - Gradually open choke to terminal position: 30 minutes
 - Rapid vs Slow Choke Opening:

Simulation of Well Restart: Mass Flow Rate

- Gradually open choke—30 mins
- Reservoir mass flow lags @ WH
- Mass accumulation or "line packing" in the well
- Fully established flow for final choke %
- Flow instability due to multiphase flow & reservoir simulation model feedback

Simulation of Well Restart: Mass Flow

- Choke opening assumption:
 - Initial opening to ~5% open
 - 5-10 mins of minimal choke opening
 - opening

 15-20 mins period for a linear g
 opening schedule
- At early time periods and to 1.5 minimal mass flow rates, mass 1 accumulation and line packing is evident
- Differential Mass Flow Rate of 1 MTPA still evident after 30 mins of flow

Choke Opening: Transient Mass Flow Rate (MTPA)

Simulation of Well Restart: WH vs BH Trend

Pressure Trend:

Temperature Trend: Wellhead (D/S Choke) vs. Bottomhole

Simulation of Well Restart: Fluid Phase

Flow across the surface choke flashes to multi-phase

Bottomhole fluid largely remains in vapor phase due to highly depleted reservoir conditions

Initial shut-in wellhead state is vapor

Simulation of Well Restart: Temperature Profile

- Start from shut-in well
- Distinct slug of <u>COLD</u> dense fluid in the upper wellbore
- Mass accumulation means upper zone is being charged with cold mass
- Original of static fluid is travels faster than newly injected volume
- Early transient phase does not allow time for heat gain
- Distinct fluid boundary is maintained for most of the Restart period

Simulation of Well Restart (or Start-up)

Tubular Design Considerations for CCS wells

- Cold loads → tension increase in tubing & casing strings
- Collapse loads dominate tubing/completion at early injection stage (e.g., depleted reservoir) → Tensile + Collapse
- Rapid change in temperature over short length of time can cause thermal shock – CO₂ injection restart after shut-in
- Fatigue issues due to cyclic loads
- Frictional contact in the wellbore may localize load effects
- Long term integrity → highest pressure load occurs at end of sequestration phase (reservoir re-charge) when tubing and casings strings might have suffered from wall reduction

Simulation of Well Restart: Proxy Profile

- Detailed Restart simulations imported to tubing loads
- These simulations entail some computational burden
- Alternative analysis may use proxy operation flow rate
- Assume worst WHT & BHP
- Key design issues:
 - ☐ Extreme temperatures (-40°F)
 - ☐ Localized to upper wellbore
 - ☐ Transient nature (30 minutes)

Tubing Completion Analysis: Well Restart Loads

- Tensile loads from cold temps
- Collapse loads due to the low internal pressures
- Overall loading conditions are within Design Envelope
- Worst-case COMPOSITE Restart load also included
- Example is based on 80 ksi yield strength tubular grade
- Perhaps design concerns for operation conditions related to Restart are <u>exaggerated</u>?

Tubing Completion Analysis: Restart Load w/ Friction

- Standard tubular analysis generally ignores friction
- Without friction axial loads are free to "redistribute"
- Localized Friction rom running, temperature effects...
- References: SPE-178905-MS -SPE-191640-PA
- Temporary Hydrate Plug??
- Friction assumptions here only make loads <u>marginally</u> worse

Potential Off-Design Modes of Failure?

- Cyclic Fatigue due to repeated Restart operations?
- Connections may be subject to cyclic fatigue?
 - Stress Concentration Factor (SCF) e.g. BTC, SCF = 5

Fatigue Life Prediction of a BTC Exposed to Large Temperature Variations

Teodoriu & Falcone (2008)

- Thermal Shock rapid temperature changes □ Cracking?
- Metallurgy change in material behavior from Ductile to Brittle?
- Fluid Induced Vibration (FIV) flashing at choke during opening or operation? Unstable multiphase flow in wellbore?

Conclusions and Observations

- Transient simulations of Restart require full nodal analysis
- Early transient stages involve mass accumulation
- Typically considered in Pipeline/Flow Assurance models but not in Wellbore Thermal and Stress Models
- Restart load conditions are characterized by:
 - Localized extreme cold zones near surface □ Tensile loads
 - Low internal pressure for depleted gas reservoirs □ Collapse Loads
- Loads may appear marginal vis-à-vis Design Envelope
- However ... non-standard load and design issues may be critical

Areas of Further Investigation

- Focus to address "off-design" or non-standard load conditions
- Localization of stress due to friction / blockages / etc.
- Impact of cyclic loads from repeated Start-up / Restart operations
- Cyclic loads and Stress Concentrations leading to Connection Failure
- High cycle fatigue due Fluid Induced Vibrations (multiphase flow)
- Thermal Shock affects vs Tradeoff with Choke Reliability
- Altered metallurgy related to Brittle versus Ductile failure mode
- Impact on completion: SSSV / Control Lines / Fluid rheology

Thanks to the Altus Well Experts CCUS Team and to Dr. Afif Halal for their contribution

and Thank you all for your attention!

Questions?