Managing and Mitigating Hydrate Risks Associated with Geological CO₂ Storage

Hunter Thomson, Mohammad Fattahi Mehraban, Daniel Boyde, Dario Frigo, Phillip Maskell and Gordon M. Graham

SPE CCUS Virtual Conference 2023
6th October 2023

"Quality, Integrity, Safety and Excellence"
Introduction

CCUS is a critical component among several others to deliver Paris Agreement goals

Understanding key operational challenges related to CO₂ injection is critical

Main issues associated with this are:
• Corrosion
• Injection well integrity (cement)
• CO₂ injectivity

Whilst CO₂ injection is not new, conditions differ significantly for geological carbon storage e.g., lower temps and pressures than O&G Production

Effective & reliable lab assessment methods are crucial to determine under which conditions CO₂ injectivity impairment begins and how this can be effectively mitigated and controlled
Geological Carbon Storage - Issues

Risks associated with CO$_2$ injection into GCS targets

- Injection under matrix conditions
- Dry CO$_2$ injection strips water
- Suspended solids
- CO$_2$ hydrates formation in the near-wellbore
- Corrosion
- Injection Well Integrity
- Asphaltene precipitation
Geological Carbon Storage - Issues

This work presents new laboratory processes for assessment of CO$_2$ injection under dynamic conditions representing the near wellbore

Determine specific operating conditions when CO$_2$ injectivity is impaired

Current focus is dynamic hydrates formation and mitigation assessment

Why are we doing this?

Traditional O&G hydrate tests are conducted under bulk/static conditions

Replicates tubulars – not suitable for near wellbore/dynamic CCUS operations

CCUS industry also assesses CO$_2$ hydrates for their utilization, not the near wellbore risks they pose.
CO₂ Hydrates

Their formation can reduce/prevent injectivity into GCS target reservoir

Can form in the injection system if the system itself is not sufficiently dry

Risk of formation in the reservoir from;
• Water almost always present in the reservoir
• Joule-Thomson cooling / phase change (liquid/gas) from dPs

CO₂ hydrates generally form more readily than hydrocarbon hydrates
• Form at lower P than CH₄ hydrates up to ~ 10 °C
• Kinetics can be faster
• Less porous than CH₄ hydrates
CO₂ Hydrates

Traditional hydrate formation / mitigation assessments are conducted under bulk/static conditions

Not suitable for hydrate risk assessment in reservoir matrix
• plugging mechanisms are specific to reservoir rock type
• crystal migration to pore throats
• “memory effects”

Lab testing equipment built for controlling the necessary test conditions to
I. Effectively and repeatably generate CO₂ hydrates within a core matrix
II. Allow for the assessment of potential mitigation / remediation methods for CO₂ hydrate risk
III. Leading to reliable lab qualification methodologies before field trials
Methodology Inputs – Key Experimental Challenges

Achieve very low test temperatures (– 25 °C)

Required significant modification to existing equipment

Assessing current material suitability at low temps and sourcing alternatives (metals, elastomers, confining fluids)

Various experimental design options were considered during initial stages.

Two Experimental Setups carried forward for initial tests –

• Insulated enclosure (lab oven) combined with in-situ chiller bath cooling system
• Laboratory freezer
Various Experimental Designs

Existing CF - Chiller and OFN Blanketing
Custom-made Built Dynamic Low Temperature CO$_2$ Injection Rig

- Standard core flood experimental setup required improving for challenging low temperatures
 - down to -25 °C
- Combined freezer & chiller bath core flood system designed and built.
- Specialized gas mixing/injection system and dual injection core holder
 - separate CO$_2$ & brine injection lines

Figure 1: Dynamic Low Temperature CO$_2$ Injection Rig: Side View; Inside View; Front View with Door Closed (from left to right).

Figure 2: Dynamic Low Temperature CO$_2$ Injection Rig Simplified Schematic of Dual Injection System

Bespoke Built Dynamic Low Temperature CO₂ Injection Rig

Initial Cooling Protocol Tests – Chillers only (ambient, down to -5 °C)

- Stronger alignment between recorded temps
- Improved stability with new test rig (no need for nitrogen)
Bespoke Built Dynamic Low Temperature CO$_2$ Injection Rig

Initial Cooling Protocol Tests – Freezer on, set to -25 °C (from -10 °C)

- Stronger alignment between recorded temps
- Improved stability with new test rig (no need for nitrogen)
- Freezer and core / core holder achieving near -25 °C in ~ 300 mins
Testing Variables

- 99% CO₂ Gas
- 2.5 wt% NaCl Brine

- Temp Range = Ambient to -25 °C
- Pressure Range = 220 – 700 psi
General result – Hydrates successfully formed within core rig

CO₂ hydrate formation in situ (within core substrate)
General result – Hydrates successfully dissipated within core rig

CO_2 hydrate dissociation in situ by pressure reduction

No communication between inlet and outlet indicates blockage between them (i.e. within the core)

No dissipation of blockage until below hydrate stability pressure (i.e. confirming the blockage was due to hydrate)
Blockage is almost immediate in the coil while it is gradual in the core which can be ascribed to porous media effects.

Differences also observed in terms of hydrate formation (in absence of THI) and in hydrate dissipation with and without inhibitors. But dynamic bulk phase represents good screening.
Conclusions

• Lab assessment crucial for determining which conditions injectivity of CO$_2$ could become impaired
 • Traditional hydrate laboratory assessment conducted under bulk/static conditions
 • Static lab equipment is not suitable to assess risk to CO$_2$ injectivity within a reservoir formation matrix

• Project successfully designed core flood system to assess CO$_2$ hydrate formation and dissociation in flowing conditions within porous media under selected CCUS field conditions

• Further work modified approach to allow simpler dynamic bulk phase inhibitor tests under a coil / filter blocking approach to screen THI and KHI under dynamic flow conditions

• Work is now moving forward to assess field prevention and mitigation approaches for selected field cases with known CO$_2$ hydrate risk
Thank you

Contact Us

enquiries@scaledsolutions.com

www.scaledsolutions.com

United Kingdom
Scaled Solutions Livingston
6 Nettlehill Road
Houstoun Industrial Estate
Livingston, EH54 5DL
T: +44 (0)1506 439994
F: +44 (0)1506 439971

United Arab Emirates
Scaled Solutions Abu Dhabi
Mussafah Industrial Area No. 41
Showroom B130GF, Plot 29-A
Mussafah, ICAD 3
Abu Dhabi
T: +971 (0) 2666 9304

USA
Scaled Solutions USA
12621 West Airport Blvd
Suite 400
Sugarland
Texas, 77478

Malaysia
Scaled Solutions Malaysia Sdn Bhd
7.26 7th Floor Wisma Central
Jalan Ampang 50450
Kuala Lumpur