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Introduction

CCUS is a critical component among
several others to deliver Paris Agreement
goals

Understanding key operational challenges
related to CO, injection is critical

Main issues associated with this are:
« Corrosion

* Injection well integrity (cement)

* CO, injectivity

Whilst CO, injection is not new, conditions differ significantly for geological carbon storage
e.g., lower temps and pressures than O&G Production

Effective & reliable lab assessment methods are crucial to determine under which conditions
CO, injectivity impairment begins and how this can be effectively mitigated and controlled
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Geological Carbon Storage - Issues

Risks associated with CO, injection into GCS targets

Onshore AV, = ) Offshore

* Injection under matrix conditions
 Dry CO, injection strips water ~ #EEE8 L
« Suspended solids

* CO, hydrates formation in the near-wellbore

Unmineable coal seams

) CO r ro S i O n Depleted Oil & Gas Reservoirs

Deep saline formations

* Injection Well Integrity

« Asphaltene precipitation
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Geological Carbon Storage - Issues

This work presents new laboratory processes for assessment of CO, injection under dynamic
conditions representing the near wellbore

Determine specific operating conditions when CO, injectivity is impaired

Current focus is dynamic hydrates formation and mitigation assessment

Why are we doing this?

Traditional O&G hydrate tests are conducted under bulk/static conditions

Replicates tubulars — not suitable for near wellbore/dynamic CCUS operations

CCUS industry also assesses CO, hydrates for their utilization, not the near wellbore risks they
pose.
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CO, Hydrates

Their formation can reduce/prevent injectivity into GCS target
reservoir

Can form in the injection system if the system itself is not
sufficiently dry

Risk of formation in the reservoir from; il P .
« Water almost always present in the reservoir
« Joule-Thomson cooling / phase change (liquid/gas) from dPs ‘.

CO, hydrates generally form more readily than hydrocarbon hydrates
* Form at lower P than CH, hydrates up to ~10 °C

- Kinetics can be faster “g
* Less porous than CH, hydrates

<+ >
0.5 nm
Ren et al. 2019
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Traditional hydrate formation / mitigation assessments are conducted under bulk/static
conditions

Not suitable for hydrate risk assessment in reservoir matrix
 plugging mechanisms are specific to reservoir rock type
« crystal migration to pore throats

* “memory effects”

Lab testing equipment built for controlling the necessary
test conditions to

|.  Effectively and repeatably generate CO, hydrates within
a core matrix

II. Allow for the assessment of potential mitigation /
remediation methods for CO, hydrate risk

Ill. Leading to reliable lab qualification methodologies
before field trials
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Methodology Inputs — Key Experimental Challenges

Achieve very low test temperatures (— 25 °C)
Required significant modification to existing equipment

Assessing current material suitability at low temps and sourcing alternatives
(metals, elastomers, confining fluids)

Various experimental design options were considered during initial stages.
Two Experimental Setups carried forward for initial tests —

* Insulated enclosure (lab oven) combined with in-situ chiller bath cooling system
« Laboratory freezer
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Various Experimental Designs
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Custom-made Built Dynamic Low Temperature CO, Injection Rig

« Standard core flood experimental setup required improving for challenging low temperatures
« downto -25°C

« Combined freezer & chiller bath core flood system designed and built.

« Specialized gas mixing/injection system and dual injection core holder
» separate CO, & brine injection lines
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Figure 1: Dynamic Low Temperature CO; Injection Rig: Side View: Inside View; Front View with Door Closed (from left to right). lgure 2: Dynamic Low Temperature CO; Injection Rig Simplified Schemafic of Dual Injection System

Peat, S., Jones, D., Boyde, D., Frigo, D., Graham, G., Le-Goff, T.-H., Lagarde, F. 2022. “Innovative Dynamic Laboratory Testing Methods and Workflow for Evaluating and Mitigating Carbon
Dioxide Injection Challenges in Geological Storage Prospects”. Paper SPE-210811-MS presented at ADIPEC, Abu Dhabi, UAE, 31 Oct — 03 Nov 2022.
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Bespoke Built Dynamic Low Temperature CO, Injection Rig

Initial Cooling Protocol Tests — Chillers only (ambient, down to -5 °C)
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Bespoke Built Dynamic Low Temperature CO, Injection Rig

Initial Cooling Protocol Tests — Freezer on, set to -25 °C (from -10 °C)
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Testing Variables
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General result — Hydrates

CO, hydrate formation in
situ (within core substrate)
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General result — Hydrates successfully dissipated within core rig

CO, hydrate dissociation in
situ by pressure reduction

No communication
between inlet and outlet
indicates blockage between
them (i.e. within the core)

No dissipation of blockage
until below hydrate stability
pressure (i.e. confirming
the blockage was due to
hydrate)
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Example result core vs bulk phase dynamic hydrate inhibition

! Blockage Is almost immediate in the coil while it is gradual in the core WhICh !

I
i can be ascribed to porous media effects ;
e
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| I
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! But dynamic bulk phase represents good screening !
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Conclusions

Lab assessment crucial for determining which conditions injectivity of CO, could become impaired

 Traditional hydrate laboratory assessment conducted under bulk/static conditions
« Static lab equipment is not suitable to assess risk to CO, injectivity within a reservoir formation
matrix

* Project successfully designed core flood system to assess CO, hydrate formation and dissociation
in flowing conditions within porous media under selected CCUS field conditions

» Further work modified approach to allow simpler dynamic bulk phase inhibitor tests under a coil /
filter blocking approach to screen THI and KHI under dynamic flow conditions

« Work is now moving forward to assess field prevention and mitigation approaches for selected field
cases with known CO, hydrate risk
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