Cement Self-Healing: Understanding and Enhancing Performance Under Reactive Conditions

CO₂ Storage Conference 2025

Hamed M. Kermani, Aleksandr Mamanov, María Pérez Fernández,

Mohamed Oukil Benmesbah, Hamid M. Nick

Introduction and objectives

- In CS context cement is a barrier against upward leakage of CO₂-rich fluids
- Compromised well integrity
 - Physically: fractures, debonding and micro-annuli
 - Chemically: degradation (carbonation and bicarbonation)
- Possible beneficial effects cement self-healing
- Key research priority to obtain efficient sealing against CO₂ leakages - maintain a low-permeability barrier preventing vertical or lateral gas migration

Project objectives:

- 1. Understanding of self-healing mechanisms of wellore cement under CO₂ exposure conditions: critical parameters influencing self-healing
- 2. Develop systematic experimental protocols suitable for further practical applications

Fractures, debonding and micro-annuli in wellbore

Possible CO₂ propagation in a cased wellbore

October 1st 2025 Technical University of Denmark

Carbonation of intact neat wellbore cement

Formation of reaction zones in cement exposed to CO₂-saturated brine

Kutchko et al., 2008. Rate of CO₂ attack on hydrated class H well cement under geologic sequestration conditions

Zone 3 – Silica-gel (outermost, porous, weak).

After prolonged attack, carbonic acid dissolves previously formed CaCO₃ and decalcifies C-S-H, leaving an amorphous SiO₂-rich paste with high porosity and poor integrity.

Zone 2 – Carbonate precipitation (denser "barrier")

Ca²⁺ released by portlandite dissolution reacts with HCO₃to precipitate CaCO₃ within pores. This infilling reduces permeability, increases local strength, and acts as a diffusion-slowing barrier.

Zone 1 – Portlandite-depleted zone (CH leached)

The first step of CO₂ attack is dissolution of Portlandite $(Ca(OH)_2)$ feeding Zone 2 calcite precipitation. Behind Zone 1 lies unaltered cement.

October 1st 2025 **Technical University of Denmark**

Static exposure of neat wellbore cement to CO₂

October 1st 2025 Technical University of Denmark

Carbonation of fractured wellbore cement

Brunet et al., 2016

Fracture or debonding exposed to CO₂

- Fresh cement surfaces are exposed and CO₂-rich fluids
- Shift from slow diffusion in the matrix to faster advection along the fracture
- Near the fracture surface, CO₂-rich water dissolves portlandite and leaches Ca²⁺
- As the fluid moves and mixes \rightarrow CaCO₃ becomes supersaturated and starts to precipitate – "self-healing"
- Precipitation of calcite → denser fracture infill, can partially close the fracture aperture and reduce permeability
- The reactive transport modeling has shown a relation between the aperture size and residence time where the interplay between the sealing and opening can be determined.

Fracture Opening

Aperture (µm)

Intact and fractured/debonded cement samples

25

Self-sealing

Self-healing mechanisms

CO ₂ STORAGE CONFERENCE 2O25	DTU

Reaction Type	Formula	Effect on Healing	Applicable to (Neat cement/ Additives)	
Doublandita combanation	C-(OLI) + CO	Positive: Fills pores/cracks, reduces	Neat cement; enhanced with	
Portlandite carbonation	$Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$	permeability, increases strength	Ca-rich additives	
Piccebonation and CoCO	$CaCO_3 + H_2CO_3 \rightarrow Ca(HCO_3)_2$	Negative/Mixed: Leaches Ca ²⁺ , increases	Next coment: mitigated by	
Bicarbonation and CaCO₃ dissolution	$CaCO_3(s) + CO_2(aq) + H_2O \rightleftharpoons Ca^{2+} +$	Neat cement; mitigated by porosity; may enable further precipitation		
	2HCO₃⁻.	if buffered	pozzolans	
Continued hydration of Tricalcium	$C_3S + H_2O \rightarrow C-S-H + Ca(OH)_2$	Positive: Forms additional C-S-H, bridges	Neat cement; accelerated with	
Silicate (C₃S)		defects	nanomaterials	
Continued hydration of Dicalcium	$C_2S + H_2O \rightarrow C-S-H + Ca(OH)_2$	Positive: Similar to C₃S, but slower;		
Silicate (C₂S)		contributes to long-term healing	Neat cement	
C-S-H decalcification (Silica gel	C. C. I.I. I.I.I. Ci wielk well i Ce ²⁺	Mixed: Forms protective silica layer;	Neat cement; stabilized by	
formation)	C–S–H + H ⁺ → Si-rich gel + Ca ²⁺	excessive can lead to porosity increase	silica-based additives	
Domalania na satian	$Ca(OH)_2 + SiO_2 + H_2O \rightarrow$	Mixed: Consumes Ca(OH)2, forms denser	Pozzolanic additives	
Pozzolanic reaction	CaO·SiO₂·H₂O (C-S-H)	C-S-H, resists leaching		
Geopolymer Reaction	$Na_2SiO_3 + Al_2O_3 + H_2O \rightarrow$	Positive: Forms robust gel matrix, reduces	es Geopolymer additives	
(Aluminosilicate Gel)	Na-aluminosilicate gel	carbonation depth		
Nano-Enhanced C-S-H Formation	SiO_2 (nano) + $Ca(OH)_2 \rightarrow Nano-C-S-H$	Positive: Accelerates densification, fills	With nanomaterials	
	$CO(NH_2)_2 + 2H_2O \rightarrow 2NH_4^+ + CO_3^{2-};$	nano-pores Positive: Fast crack filling, densification of		
Bio/enzymatic CaCO₃ (MICP/EICP)	$CO(10112)2 + 2112O \rightarrow 210114 + CO_3$, $Ca^{2+} + CO_3^{2-} \rightarrow CaCO_3(s)$	leakage pathways	With bacteria or enzymes	

Parameters affecting self-healing

- Fracture/debonding sizes

- Curing duration

- Heterogeneities

- Fracture geometry

Static vs dynamic CO₂ exposure

Experimental protocol for soaking static CO₂ exposure tests

Fractured neat class G cement sample

Preparation of experimental setup

Static vs dynamic CO₂ exposure

Experimental protocol for dynamic CO₂ exposure tests

9

Preliminary results

CT scanning of fractured plug after 1 month CW exposure

Fractured G cement sample before exposure

October 1st 2025 Technical University of Denmark

Final remarks

- Cement self-healing via carbonation is promising, especially for microcracks (<20 μm), but healing of larger fractures remains uncertain.
- Engineered additives (e.g., pozzolans, nanomaterials, microbes) enhance healing but face scalability and cost challenges.
- Standardized testing, long-term durability data, and field validation are needed to ensure reliable sealing in CCS operations.
- Reactive transport modeling can be used to gain insights on the dynamic geochemical interactions in cement media through a long-term process.

Thank you for listening – Any questions?

Acknowledgment

This work is part of a collaborative project on "Self-healing cement for long-term CO₂ applications", supported by **TotalEnergies**.

October 1st 2025 Technical University of Denmark CO2-cement 12