

Hydraulic fracture stimulation on Clair Ridge well with CT fibre optic technology James Paterson, bp

Aigerim Balgozhenova, SLB

Presentation contents

- Field background
- Well summary
- Hydraulic fracturing overview
- CT challenges and solutions
- Real-time CT technology
- Sleeve shifting operations
- SIMOPs challenges
- Results
- Conclusions and next steps
- Acknowledgements

Clair Ridge platform at Clair Field

Clair Field background

- Largest UK Offshore oilfield (>6 billion BOE)
- Discovered in 1977 but not developed until 2005
- Clair Phase 1 (2005) and Clair Ridge (2018) platforms
- Permeabilities 3–25 md, porosity 12– 15% (Units V and VI)
- Horizontal wells targeting natural fractures
- Value of hydraulic fracturing for Clair: A23 on Phase 1 was stimulated in 2019 – delivering threefold production increase

Location of Clair oilfield

Clair Field area – Phase 1 and Ridge

A23 production history

Well summary and completion design

- Horizontal multizone producer
- 8 ½-in. openhole reservoir section
- Mechanical sliding sleeves and swellable packers
- Four fracture zones (total of seven zones)
- Upper and lower completion—5.5-in., 13Cr 80ksi
- Tubing rock anchors to support against axial load under fracturing loads and to assist with packer integrity after fracturing
- Well B09: first to be fully designed for hydraulic fracturing on Clair Ridge
- The well did not target natural fractures, instead drilling through largely matrix reservoir
- Completed in January 2021 in Unit V and Unit VI reservoir

B09 completion schematic

Well intervention overview

- Multiple services and interfaces are required to deliver a complex activity offshore:
 - Coiled tubing, wireline, cleanup package, stimulation vessel
 - Drilling and completion (rig operations)
 - Production operations
- Intervention sequence:
 - Replace gas lift valve (GLV) with dummy (wireline)
 - Close all sleeves (CT) and pressure test
 - Open frac sleeve (CT)
 - Stimulate zone
 - Reverse circulation cleanout proppant (CT)
 - Close frac sleeve and open upper sleeve (CT)
 - Repeat for all zones
 - Shear open GLV
 - Cleanout well to total depth (CT)
 - Flowback

Coiled tubing and cleanup package setup

Hydraulic fracturing design

- 20/40 and 16/20 light-weight proppant
- Resin-coated design for low Clair temperatures
- 150,000–300,000 lbm of proppant per stage
- Designed to be pumped at max 30 bbl/min; 8 PPA maximum proppant concentration
- Tip screenout (TSO) fracture design
- Proppant under-displaced in the well by up to 5 bbl to ensure good wellbore connectivity at the fracture opening
- Under-displaced fractures require CT cleanout after each frac stage
 - Bottomhole pressure management during CT cleanout critical to avoid fracture re-opening!

Parameter	Recommendation
Fracture height	Maximized vertical cover of Unit V and Unit VI
Fracture half-length, m	50
Fracture conductivity, md-ft	5,000 - 10,000
Proppant volume, lbm	150,000 - 300,000
Proppant type	20/40 with 16/20 lightweight resin-coated proppant

B09 fracture design recommendation summary

Clair Ridge Unit V wells

Planned fracture placement

Coiled tubing challenges and solutions

Challenges

Solutions

Electro-optical hybrid cable

- 0.128-in. OD
- Four optical fibers
- Serve wire
- Return on armor

RT tool assembly and applications

Utilization of sensor data — reverse cleanout

- Importance of downhole pressure monitoring:
 - Low bottomhole pressure and frac re-opening pressure
- Early detection of CT blockages:
 - Ensured timely identification and resolution

Utilization of sensor data — sleeve shifting

- Leak detection with distributed temperature survey
- Verification of sleeve repositioning by:
 - Downhole tension/ compression
 - CCL
 - CT pressure external/internal and temperature

SIMOPs challenges

- Requirement for multiple equipment packages in single operation
- Intervention constrained to production deck
 - Limited deck area
 - Available height
 - Weight load limitations

Positioning plan — "deck chess"

Highlighted: Intervention deck at Clair Ridge

Multiple equipment packages on deck for B09

Leveraging technology for success

3D model indicated PCE frac head clash

Use of 3D model to identify clash of CT injector and jacking frame

- 3D visual tools (platform digital twin)
 - Clash 1: coil injector jacking frame and injector with the walkway above
 - Clash 2: platform pipework and the frachead
 - CT fibre-optic cable for live data stream
 - onshore monitoring, interpretation, and real-time support
 - Shearable gas lift valve (GLV)
 - Positive pressure in the annulus (dummy valve) during fracturing
 - Conventional orifice GLV after fracturing by shear-out

Digital twin in intervention planning

Clair Ridge digital twin — utilities identification

- Digital twin develop layouts virtually and test in yard prior to mobilisation
- Visualisation of worksite Identify potential hazards and clashes, minimise HSE risks and NPT
- Input to site survey and HAZID/HAZOP processes understand how work actually happens

Results

B09 actual fractures placement

- Four fractures placed as designed: two in Unit V and two in Unit VI
- Zones 1, 2, and 4 achieved design goals and fracture dimensions
- Zone 3 resulted in a premature screenout

Production uplift, normalised to pre-fracturing rate (black)

- Instantaneous production increase by factor of 5.5
- Stabilised production increase
- Gas lift removal post fracturing well flows unassisted

Conclusion: learnings and next steps

- Demonstrated capability of delivering complex fracturing intervention SIMOPs with an ongoing drilling programme
- Hydraulic fracturing can deliver significant value by improving well productivity on Clair Ridge
- Complex SIMOPs requires extensive planning and communication between teams
- Leveraging available technology to de-risk and simplify operations
 - 3D tools / digital twin
 - Real-time data stream and powered CT
 - Shearable gas lift valves
- Future offline stimulations will aim to improve efficiency using a single trip multi-frac (STMF) technique
- Expand the capability of CT intervention (e.g., GLV c/o on powered CT)
- Build on 3D visualisation by developing a full 3D model of entire spread

For more information refer to SPE-215632-MS. Case Study: First Multistage Fracturing SIMOPS with Concurrent Drilling Operations in Clair Ridge Field, North Sea

Acknowledgements

bp

• Presentation Partner:

The presenters would like to thank bp Exploration Operating Company Ltd and the other Clair Field owners for their kind permission to share this case study.

