

Fracturing Using Supercritical CO₂ and Water – Application to Carbon Sequestration

Blessed Amoah Integrated Core Characterization Center (IC³) University of Oklahoma

> CCUS Conference October 4th, 2023

Outline

- Motivation
- Experimental procedure
- Results and discussion
 - Breakdown pressure and acoustic emissions
 - Hypocenter location of acoustic emissions
 - Fracture dimensions
 - Permeability of fracture
 - Fracture morphology
- Conclusions
- Summary
- Recommendation

Motivation

High injection pressure of CO_2 :

- Increase the storage capacity of CO₂
- Injection induced fractures pose risk to CO₂ containment
 - Breakdown pressure is typically determined in a leak-off test (uses a water-based fluid)

Investigate induced fractures risk during supercritical CO₂ injection

Experimental procedure

Sample	Gas filled porosity (%)	Permeability (md)	Mineralogy (wt%)		
			Quartz	Clay	Others
Tennessee sandstone (six cylindrical samples)	6.5	0.015	84	11	5

Stresses (psi): σ_V = 1500, σ_h = 500, σ_H = 3000

Experimental procedure

Jacket Acoustic transducer

Jacketed sample

Triaxial Cell

Results and discussion

Breakdown pressure and acoustic emissions

I - *IC*³

Breakdown pressure and acoustic emissions

Acoustic emissions increased by a factor 4 using $ScCO_2$.

Hypocenter location: plan view

Fracture dimensions

Water injection

Left side view

I - *IC*³

Bottom view

The UNIVERSITY of OKLAHOMA Mewbourne School of Petroleum and Geological Engineering G Top view

Right side view

Bottom view

Gas permeability of fractured plugs

Fracture morphology

Conclusions

Our experiments with $scCO_2$ and water in Tennessee sandstone shows:

- The average breakdown pressure with $scCO_2$ is about 380 psi (16%) lower than with water.
- ScCO₂ fracturing shows an increase by a factor of 4 in acoustic emissions
- Fractures created by scCO₂ are more complex (longer length, wider aperture, mismatched asperities and loose grains). Consequently, this leads to an increase in permeability of fractures by one order of magnitude.

Summary

Formation breakdown will occur at a lower pressure with $scCO_2$ injection than the estimated breakdown pressure from leak-off test. Generated fractures can propagate long distances into the formation and can be more transmissive. Thus, these fractures can easily facilitate the migration of CO_2 from the sequestration zone.

Recommendation

Laboratory fracturing studies with CO₂ on core samples should be done to determine the exact breakdown pressure.

[] - IC³

Thank you

Acknowledgement

Advisors

Dr. Chandra Rai

Dr. Carl Sondergeld

Dr. Son Dang

Dr. Mark Curtis

Dr. Deepak Devegowda

IC³ Technical Assistants

Micaela Langevin Gary Stowe

References

1. Damen, K., Faaij, A.P.C., and Turkenburg, W.C. 2006. Health, Safety and Environmental Risks of Underground Co2 Storage-Overview of Mechanisms and Current Knowledge. Climatic Change.

Back-up slides

IC³

Acoustic emissions increased by a factor 4 using $ScCO_2$.

$$P_b^H = 3\sigma_V - \sigma_H - P_p + T_o, if \sigma_{V} < \sigma_H$$

ScCO₂ viscosity: 15 times lower than water viscosity (Deng. et al. 2021)

I - *IC*³

Viscosity and diffusion coefficient of ScCO₂

Figure 4. Viscosity calculation data plate.

- Viscosity: 0.05 0.07 cp @ 310K and 11.8 MPa
- Viscosity: 20 15 times lower than that of water
- Diffusion/leak off rate of CO2 @ 333.15 373.15 K, 10-25 MPa, 50 mD = 0.9 – 18.5 * 10⁻⁴ cm³/s (Lv et al., 2019)
- Injection/pressure build up rate: 10 cm³/s
- Compressibility of $CO_2 = 10^{-9} 10^{-8} Pa^{-1}$ which is 1 – 2 order of magnitude greater than that of water