

CCUS Conference 2023 There and Back Again: CO₂ Injection into Depleted Gas Reservoirs

05/10/23

kentplc.com

Introduction

- ✤ CCUS is likely to be a key tool in reducing CO₂ emissions as not all emissions can be eliminated completely
- Depleted gas reservoirs offer a number of advantages for CO₂ storage such as:
 - Prior knowledge of reservoir and its barriers
 - Availability of existing infrastructure
- ✤ However the low reservoir pressures present a range of challenges
- Flow assurance challenges include:
 - ✤ Multiphase flow
 - Low temperatures
 - Water dropout / hydrate formation

Injection to Depleted Gas Reservoirs

- Can operate below the dewpoint curve in gas phase but if injection rates increases, system pressures can force fluid into liquid / dense phase
- There are various ways to operate CO₂ transportation and injection systems at higher pressures:
 - 1. Operating pipelines at pressures above ~35-40 barg can result in multiphase flow in the pipeline / wells
 - 2. Pipeline can be operated in dense phase at high pressures
 - 3. Dropping the pressure at well chokes results in multiphase flow in wells
 - 4. Alternatively heat can be applied to vapourise the CO₂ before injection into the wells

Multiphase Flow Risks

- There are a number of issues around operating pipelines/ wells in multiphase flow conditions:
 - Slugging
 - Impurities partitioning between phases
 - Meter Accuracy
 - Low Temperatures
 - ✤ High Velocities
- ✤ These risks may depend on whether multiphase flow occurs in the wells or pipelines

Low Temperature Risk of CO₂

- \clubsuit As the pressure of CO₂ falls, the temperature also falls
 - ✤ This effect is more significant in multiphase and gas phase fluids than in liquid phase.
- ✤ Isenthalpic depressurisation curves shown below:

CO₂ Hydrate Risks

- Dehydration will be the primary defence against water condensation / hydrate formation
- CO₂'s hydrate behaviour at low water contents is affected by the Gas-Liquid phase boundary due to different water saturation levels of gaseous / liquid CO₂
 - ✤ Water condensation much more likely when operating in gas phase CO₂
- ✤ Also need to be aware of hydrate risk for the free water in the reservoir

Locations / Operations of Focus

- ✤ Areas to check for multiphase flow, hydrate / water dropout, or low temperatures:
 - Shutdown:
 - Pipelines (Gas Phase): Liquid dropout on packing
 - Pipelines (Dense Phase): Vapour flashing on cooldown
 - ✤ Wells: Pressure drop as excess pressure dissipates to reservoir
 - Start-up / Restart:
 - Pipelines (Multiphase): Liquid arrival at outlet
 - Wells: Pressure drop across choke causing low temperatures
 - Depressurisation / Venting: Low temperatures, hydrates, solid CO₂ formation

THANK YOU