Enhancing Reservoir
Characterization with
Machine Learning
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Why Change? Traditional vs. Al-Powered Workflows

 Traditional workflows are still reliable but could be slow,
subjective, labor-intensive.

ML Is accelerating subsurface analysis
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Al-Powered Log Analysis in PowerlLog
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« Python Integration = Unlimited Flexibility:
Use cutting-edge algorithms
(TensorFlow, scikit-learn, etc.) from
Google/Microsoft via scripting.
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Practical Al in Geophysics - Rock Physics-Driven ML

Challenge: ML normally needs lots of high-quality data — but we often have only a few
wells.

Solution: Integrate rock physics modeling with statistical augmentation to generate realistic
synthetic data.

Result: Even small real datasets become effective training sets. ML predictions stay robust
despite limited field data.
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Beyond Hydrocarbons — Wider Energy Applications

These ML workflows extend to geothermal reservoirs, carbon capture &
storage (CCS) sites, and even offshore wind farm site characterization — not
just oil & gas.

GeoSoftware’s Al-driven technology provides quick results, high data
reliability, and reduced subsurface risk across all energy projects.
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(a) Input seismic section
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Deep Neural Network predlctlons for cone resistance
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(b) Estimated total porosity
showing porous layers in the
upper part of the Dogger
Formation, which correlates
with logs from nearby wells.
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Conclusions

Al handles tedious tasks and refines results,
S0 experts can focus on high-level decisions.

 Reduce risks. Better predictions mean fewer ML delivers benefits -
drilling surprises and more efficient reservoir let’s embrace it
development.

 ML-based approaches adapt and improve
with new data, ensuring long-term value as
challenges evolve.

« Partner with GeoSoftware — Leverage our
expertise in subsurface ML to drive your next _
project’s success. (We're ready to help!) mage generated g ERAGH
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