Hydrothermal district heating in Schwerin – reviving the geothermal potential of the North German Basin

Stefan Thiem¹, Marco Wunsch¹, Christian Buse¹, Rafael Mathes¹, Ingmar Budach¹, Matthias Franz², Benjamin Kielgas³, Rene Tilsen³

¹ Geothermie Neubrandenburg GmbH
² Geowissenschaftliches Zentrum der Georg-August-Universität Göttingen
³ Energieversorgung Schwerin GmbH & Co. Erzeugung KG

21.02.2024
Geothermal history of Northern Germany

Development

- 6 heating plants in operation
 - 4 built until 1995
 - 2 built until 2007

- Schwerin started operational trial in 2023
Geothermal history of Northern Germany

Challenges

- Exploration risk
 - main reservoir = fluvial channel systems
 - distributional variability of sandstones

- Moderate reservoir temperature (< 60°C)
 - demand > 80 °C for direct transfer
 - requirement for large scale heat pumps
Reduction of exploration risk

- Development of facies model

 - Classical approach
 - Advanced reservoir characterization
 - Facies model

Feldrappe et al. (2008)
Franz et al. (2018)
Zimmermann et al. (2018)
Schwerin Lankow

1st application of facies model
Schwerin Lankow

Reservoir characteristics

<table>
<thead>
<tr>
<th></th>
<th>Schwerin 6</th>
<th>Schwerin 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth - TOP (m TVD)</td>
<td>1,245</td>
<td>1,220</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>57</td>
<td>56</td>
</tr>
<tr>
<td>Thickness (m)</td>
<td>49</td>
<td>42</td>
</tr>
<tr>
<td>Porosity (%)</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>Permeability (D)</td>
<td>6.2</td>
<td>6.3</td>
</tr>
<tr>
<td>Salinity (g/l)</td>
<td>145</td>
<td>147</td>
</tr>
<tr>
<td>Productivity (l/s/bar)</td>
<td>35</td>
<td>18</td>
</tr>
</tbody>
</table>

- Design parameters heating plant
 - Rate = 42 l/s
 - Production temperature = 55.5 °C

Limitation factors for flow rate
- Reservoir integrity
- Screen design
- Economic costs for pump

Improved knowledge on these factors is major challenge for future development

Impressive reservoir quality
Moderate reservoir temperature

- High temperature large scale heat pumps

- Coefficient of performance

\[
COP = \frac{\text{heat output}}{\text{drive power}}
\]

\[
COP = 4:
\]

- COP of ideal process:

\[
COP_{\text{Carnot}} = \frac{T_S}{T_S - T_I}
\]

\[
\text{COP} = \text{COP}_{\text{Carnot}} \times \text{factor}
\]

Decisive factor is the difference between supply temperature and injection temperature.
Moderate reservoir temperature

COP improvement by cascade connection

\[\text{COP}_{\text{Carnot}} = \frac{(80 + 273.15) \text{ K}}{(80 - 20) \text{ K}} = 5.89 \]

\[\text{COP}_{\text{Carnot}} = \left(\frac{(80 + 273.15) \text{ K}}{(80 - 40) \text{ K}} + \frac{(70 + 273.15) \text{ K}}{(70 - 30) \text{ K}} + \frac{(60 + 273.15) \text{ K}}{(60 - 20) \text{ K}} \right) \]

\[= \frac{(8.83 + 8.58 + 8.33)}{3} = 8.58 \]
Schwerin Lankow

1st application of 4 large scale heat pumps

- Flow rate = 42 l/s
- $T_{\text{Production}} = 55.5 \, ^\circ \text{C}$
- $\text{COP}_{\text{HP-mean}} = 4.35$
- Heating Capacity $\text{max} = 7.5 \, \text{MW}$
- Heat supply = 60 GWh/a

Economical utilization feasible
Geothermal Potential Northern Germany

- Exploration risk is reduced due to application of facies maps
- Utilization of moderate reservoir temperatures in combination with large scale heat pumps is economically feasible
- Geothermal reservoirs don’t need to be as deep as possible

It is time to untap the vast geothermal potential of the North German Basin
Exploration risk

Facies model

FRANZ et al. (2018)
Exploration risk

Facies model

ZIMMERMANN et al. (2018)

WOLFRAMM et al. (2014)