

How do we de-risk operations with For workovers of pressurized CO<sub>2</sub> downhole? injection wells? For drilling new injection wells For drilling relief wells? into charged reservoirs?

## Video 1



CO₂ Handling Package

## De-risking CO<sub>2</sub> Operations Through Technology Qualification

To address the unique operational risks of offshore CO<sub>2</sub> wells, Noble partnered with DNV to conduct a formal technology qualification using DNV-RP-A203.

This structured process has helped us identify and **mitigate key failure modes**, supported by targeted testing, simulations, and collaborative studies focused on CO<sub>2</sub>-specific behaviors and failure scenarios.





Project Greensand

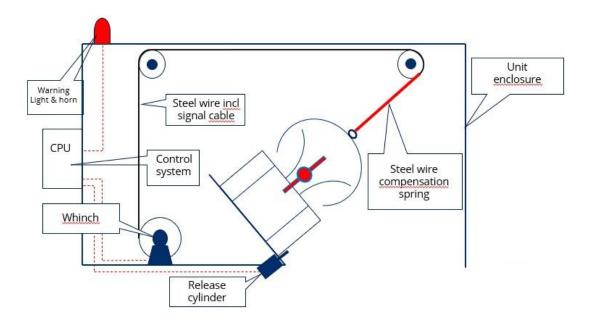


CO<sub>2</sub> Rig Trial



**Material Testing** 




CO<sub>2</sub> Simulation

# Emergency Response in a CO<sub>2</sub> Release Scenario

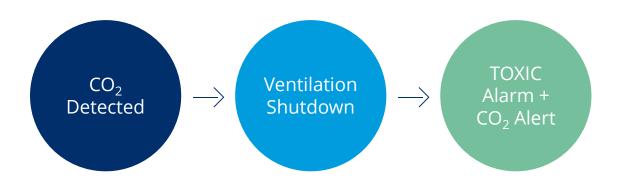
Conventional evacuation procedures require rethinking when dealing with heavier-than-air CO<sub>2</sub>.

Noble has identified three critical upgrades to safeguard personnel:

- Lifeboats with self-contained air support
- CO<sub>2</sub> wave-off lights for helicopters
- Sea-level CO<sub>2</sub> detection systems to prevent life-raft deployment into plumes










# CO<sub>2</sub> Detection and Alarm Integration

Timely detection is critical in preventing personnel exposure during a CO₂ release.

### Noble's approach includes:



Early warning systems with both remote and local alarming Automatic ventilation shutdown upon inlet detection Distinct alarm protocol that mirrors TOXIC alerts but clearly signals CO<sub>2</sub> as the cause to guide emergency response









#### STATEMENT OF QUALIFIED TECHNOLOGY

2024-2147

This is to state:

that the technology designated

#### CO2 drilling unit / rig

has been qualified for its designated use with basis in DNV-RP-A203 /1/ as defined in /2/

Description

Performing drilling, workover / intervention and plug and abandonment operations with drilling rigs/units where CO2 may be encountered in well control scenarios, as further detailed in /3/

Designated use:

DNV has been involved in the qualification process in accordance with /2/. DNV has facilitated the technology qualification process with the aim at preparing the Noble Corp drilling rigs for use with Carbon Capture and Storage (CCS) development projects

Noble has detailed out plans for rig readiness activities in preparing for upcoming pote drilling, workover / intervention and plug and abandonment operations with drilling rigs/units In the technology qualification work, no showstoppers are currently foreseen towards rig

Limitations:

Acceptance criteria for products and limits to operation are stated in /3/, the main ones being: Noble Corp and its partners have performed technology qualification activities towards rig readiness. When preparing drilling units / rigs, the key focus topics going forward, as individual rig readiness preparations are performed include

- Material and equipment suitability, with three potential mitigation options
- A. Designing and implementing a CO2 diverter system which isolates the drilling rig from CO2 in case of a CO2 well control scenario
- B. Upgrade(s) to existing rig equipment with material and equipment qualified for CO2 drilling and well control load scenarios
- C. Testing existing equipment to attempt to prove its worthiness for CO2 drilling rig operation Well control risk mitigation of well control for CO2 drilling operations

Conditions

Information which may affect the technology qualification status shall be brought to the attention of the below signatories immediately

- Reference documents: /1/ DNV-RP-A203, Technology qualification, September 2019.
  - /2/ DNV-SE-0160, Technology qualification management and verification, February 2018.
  - /3/ DNV Report 2424-1526 Noble CCS Drilling Rig TQ Report, Rev. 0, 2024-08-02.

This Statement is valid until: 2028-10-22

Issued at Esbjerg, Denmark on 2024-10-22

Desper Skott Dove

Jesper Skott Jensen Project Manage

LEGAL DICLAMBER: Unless otherwise stated in the applicable contract with the holder of this document, or following from mandatory law, the liability of DNV AQ, its purpose companies and their subdistinates as well as their following, directly, directly an interest of the insurance of this document or reliance thereon, whether in contract or in lost (including negligence), shall be limited to direct losses and under any circumstance be time for a 300,000 United to 300,000 Unit

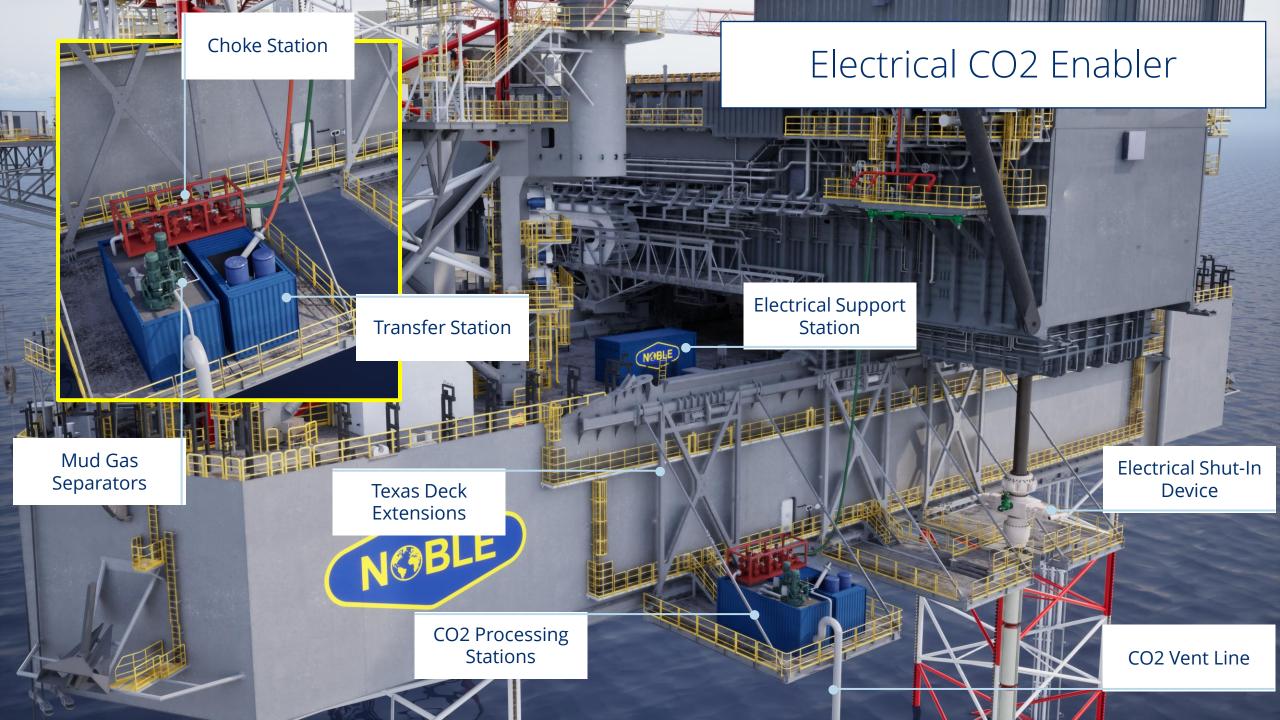
orm code: TQ 321 Revision: 2024-10 www.dnv.con

## Possible Solutions

Only 3 ways to certify well control equipment for a CO<sub>2</sub> environment:

- 1. Fully Upgrade the Whole System Including the BOP
- + **Pros:** Integrity, Reliability, Compatibility
- **Cons:** Cost, Lead times, Downtime

- 2. Conduct Materials Testing and Research to Certify the Legacy Package
- **Pros:** Targeted upgrade, Preservation, Custom solution
- **Cons:** Uncertainty, Time-consuming, Research costs, **Approvals**


- 3. Install a CO<sub>2</sub> Grade Bypass System to Circumvent the Legacy Package
- **Pros:** Cost-effective. Faster, Lower risk
- **Cons:** Integration, Logistics, Limited redundancy

When factoring in costs, timelines, and risks – we determined option 3, installing a CO<sub>2</sub> grade bypass system, to be the clearest path to success.

# Introducing the Electrical CO<sub>2</sub> Enabler (ECE)







