Johanna Waldheim
Log Analyst, EV Offshore Ltd.

Geothermal well diagnostics with high temperature video technology
Geothermal Challenges

Scale
Nature of geothermal fluid
Inevitable challenge
Impacts production

Well deformation
Geologically active areas
Main reason for early abandonment

Corrosion
Corrosive composites in fluid
- Production well → High H_2S and CO_2 content
- Injection well → High O_2 content
Manageable challenge
High Temperature Tools

Minimises the quenching requirements

Maximise accessibility to AOI

Maximise time efficiency

Minimises disruption in production

\[\Delta \text{Time} = \Delta \text{Production Loss (€)} \]

39.04 hrs
1.63 Days

\[\Delta \text{Risk} = \frac{\Delta \text{Production Loss (€)}}{\text{Labour Cost (€/hr)}} \]

\[\Delta \text{Time} = \frac{\Delta \text{Cost (€)}}{\text{Labour Cost (€/hr)}} \]

Production revenue lost during intervention time - 200°C Tool vs. 125°C Tool

>£94,000
82%
Inspection of Deformation in Monitor Well

Challenge
Understand shallow restriction

Objective
Inspect restriction

Results
Liner breach

Action
Mechanical Swaging
Successful abandonment
Remedial Aid in Injection Well

Challenge
Plan and perform remedial intervention
Restore injectivity

Objective
Aid remedial decision making
Inspect well integrity

Results
Scale fragments confirmed
No significant corrosion in well

Action
Scale clean up
Injectivity better than before
Exploration of Hold Up Depth in Monitor Well

Challenge
Understand anomalous hold up
Confirm milling job

Objective
Identify the encountered obstruction
Assess milling job

Results
No new damage
Milling confirmed successful

Action
Place cement plug on top of liner
Successfully abandoned well
Fishing Operation in Production Well

Challenge
Recover anti-scale tubing
Recommence the production

Objective
Aid fishing operation
Explore for restrictions

Results
Discovery of unexpected scale
Real-time portrayal of fish

Action
Ramp up anti-scale program
Well back on production
Conclusions

High temperature cameras are an optimal diagnostic solution for geothermal wells.

Minimizing strain in well and on production.

High resolution data, minimising risk of missing small crucial details.

Proven geothermal track record.
Thank you!
EV High Temperature Cameras

R200

- **Diameter**: 2.125 in, 54.0 mm
- **Length**: 197.92 in, 5027.27 mm
- **Pressure rating**: 15,000 psi, 1034 bar
- **Temperature rating**: 392 °F (4 hours), 200 °C (4 hours)
- **Camera Type**: Downview (Monochrome)
- **Video Frame Rate**: Up to 4 fps
- **Orientation Senor**: High-side relative bearing and deviation from vertical
- **Field of View**: 112° (Water) / 135° (Gas)
- **Recording Capacity**: Continuous real-time transmission to surface with any mono-conductor and multi-conductor cable
- **H2S / CO2**: Compatible with corrosion resistant materials throughout

R150

- **Diameter**: 1.7 in, 43.0 mm
- **Length**: 207.2 in, 5263.0 mm
- **Pressure rating**: 13,000 psi, 1034 bar
- **Temperature rating**: 302 °F (6 hours/3 hours)*, 150 °C (6 hours/3 hours)*
- **Camera Type**: Downview (Monochrome) & 360° Motorised Sideview (Monochrome)
- **Video Frame Rate**: Up to 4 fps
- **Orientation Senor**: High-side relative bearing and deviation from vertical
- **Field of View**: 112° (Water) / 135° (Gas)
- **Recording Capacity**: Continuous real-time transmission to surface with any mono-conductor or multi-conductor cable
- **H2S / CO2**: Compatible with corrosion resistant materials throughout

*Example tool string

*Two sealed telemetry sensors exist. Type 1 is rated to 150°C for up to 6 hours. Type 2 is rated to 150°C for up to 3 hours.
Camera vs. Statical diagnostic tool

4.5” 11.6# Tubing

24-MFC

- **12% Pipe wall coverage**
 - Number of fingers: 24
 - Finger contact: 1.5”
 - Pipe circumference: 12.6”

Camera

- **Full 360° visibility**
 - Not Limited to pipe ID