

Numerical Investigation of Surface Wave Anisotropy for Fault Characterisation in Geothermal Fields

Heather Kennedy^{1,2,*}, Katrin Löer¹, Amy Gilligan¹ and Claudia Finger³

¹ School of Geosciences, University of Aberdeen, Aberdeen, AB24 3FX, Scotland

² GeoNetZero CDT

³ Fraunhofer IEG, Institution for Energy Infrastructures and Geothermal Systems, 44801 Bochum, Germany

* h.kennedy.21@abdn.ac.uk

Aim:

Observe interaction of synthetic Rayleigh waves with subsurface faults.

Outline

- Why?
 - Outline the purpose of this presentation.
- Numerical Modelling
 - Background on the model used for generating surface waves.
- Rayleigh Wave Propagation
 - Examples of synthetic Rayleigh waves.
- 3C Beamforming
 - How we know it is Rayleigh waves and velocity analysis.
- Interpretations so far...
- What's next?
- Overall summary

Why?

- Faults are fundamental in geothermal fields. Why? -> hydrothermal flow
- Rayleigh waves have been shown to interact with (sub) vertical faults at depth.

2023

Problems:

This is based on Rayleigh wave velocity variation assumptions when interacting with faults.

Figure 1: Fast directions and magnitude of apparent anisotropy of (a) Retrograde Rayleigh waves and (b) Love waves at varying depths, in the Los Humeros Geothermal Field Mexico. (Kennedy et al., 2022)

Numerical Modelling

Numerical Modelling

Outline of Methodology

Numerical Modelling

20th April

2023

Rayleigh Wave Propagation

Rayleigh Wave Propagation

Rayleigh Wave Propagation

UNIVERSITY OF

Rayleigh Wave Propagation

UNIVERSITY OF

2023

Figure 2: A retrograde Rayleigh wave propagating in the x-direction. a) xsnap and b) zsnap. If you combine both of these, you get the particle motion of the wave (in orange).

- Typically Retrograde Rayleigh (outlined box) waves are shown at the surface.
- Prograde Rayleigh waves only tend to form due to a geologic change (e.g. sedimentary layer or fault) which reverses the particle motion.

Rayleigh Wave Propagation

3C Beamforming

3C Beamforming

3C Beamforming

20th April 2023 UNIVERSITY OF

Interpretation so far...

Interpretations

One time window, one frequency

Se

The velocity of maximum normalised energy Retrograde Rayleigh wave = 1.684 kms⁻¹

20th April

2023

The velocity of maximum normalised energy Retrograde Rayleigh wave = 1.333 kms⁻¹

Interpretations

(above is based on Rayleigh waves corresponding to maximum normalised response energy)

- Fault created Rayleigh waves, but it was not the only cause.
- Rayleigh wave particle motion direction changed with the presence of the fault.

Interpretations

20th April

2023

What's next?

What's next?

- Further synthetic wave type analysis for all wave arrival times/azimuth.
- Creating a synthetic anisotropy curve similar to real data below.

• Continuing this for faults of different geological situations.

20th April

2023

What's next?

Overall summary:

- Numerical modelling can be used to generate Rayleigh waves.
- Rayleigh waves travel faster when travelling along the "waterfilled" fault.
- 3C beamforming can help depict wave types, propagation velocity and direction.

Any questions?

Further reading/future talks:

Kennedy, H., Löer, K., and Gilligan, A.: Constraints on fracture distribution in the Los Humeros geothermal field from beamforming of ambient seismic noise, Solid Earth, 13, 1843–1858, <u>https://doi.org/10.5194/se-13-1843-2022</u>, 2022.

- EGU23 Vienna: TS2.1-EGU23-5756, https://doi.org/10.5194/egusphere-egu23-5756
- EGC 1 Aberdeen: Day 3-Fault and Fracture Characterisation for the Energy Transition, https://www.energygeoscienceconf.org/technical-programme/
- PGRiP 2023 Aberdeen/Edinburgh: https://pgrip2023.wordpress.com/

20th April

2023

References:

Kennedy, H., Löer, K., and Gilligan, A.: Constraints on fracture distribution in the Los Humeros geothermal field from beamforming of ambient seismic noise, Solid Earth, 13, 1843–1858, https://doi.org/10.5194/se-13-1843-2022, 2022.

Nima Riahi, Götz Bokelmann, Paola Sala, and Erik H Saenger. Time-lapse analysis of am- bient surface wave anisotropy: A three-component array study above an underground gas storage. Journal of Geophysical Research: Solid Earth, 118(10):5339–5351, 2013.

Erik H Saenger, Norbert Gold, and Serge A Shapiro. Modeling the propagation of elastic waves using a modified finite-difference grid. Wave motion, 31(1):77–92, 2000.

• RSD FD Scheme:

(a) Standard Staggered Grid(b) Rotated Staggered GridSaenger et al. (2000)

• Stability and dispersion criteria:

In place to create stability in the model (due to amplitude increasing exponentially with every timestep). Numerical dispersion (frequencydependent velocity-based errors) is also an issue.

