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Aim:

Observe interaction of synthetic Rayleigh waves with subsurface

faults.
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Outline

• Why?
• Outline the purpose of this presentation. 

• Numerical Modelling 
• Background on the model used for generating surface waves. 

• Rayleigh Wave Propagation
• Examples of synthetic Rayleigh waves. 

• 3C Beamforming
• How we know it is Rayleigh waves and velocity analysis. 

• Interpretations so far…

• What’s next?

• Overall summary
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Why?
• Faults are fundamental in geothermal fields. Why? -> hydrothermal flow

• Rayleigh waves have been shown to interact with (sub) vertical faults at depth. 

Figure 1: Fast directions and magnitude of 

apparent anisotropy of (a) Retrograde Rayleigh 

waves and (b) Love waves at varying depths, in 

the Los Humeros Geothermal Field Mexico. 

(Kennedy et al., 2022)

Problems: 

• This is based on Rayleigh 

wave velocity variation 

assumptions when interacting 

with faults.  
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Numerical Modelling
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Outline of Methodology

1 Slice (0.2 km y-direction) of 3D Model with 

a “water”-filled fault of 56 m width 

• Vs of layer = 1500 ms-1

• Vs of fault = 0 ms-1

• 100 x 200 x 200 grid 

• λmax = 250 m 

• f_c = 6 Hz

Time window

Wave Response
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Receiver Station Layout

Simulation criteria:

𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦: 𝑉𝑚𝑎𝑥 ×
𝛥𝑡

𝛥𝑥
≤ 0.8

𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛: 𝜆𝑚𝑎𝑥 =
𝑉𝑚𝑖𝑛

𝑓𝑚𝑎𝑥
≥ 10 × 𝛥𝑥
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Rayleigh Wave Propagation
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Figure 2: A retrograde Rayleigh wave 

propagating in the x-direction. a) 

xsnap and b) zsnap. If you combine 

both of these, you get the particle 

motion of the wave (in orange).

• Typically Retrograde Rayleigh (outlined box) waves are 
shown at the surface. 

• Prograde Rayleigh waves only tend to form due to a 
geologic change (e.g. sedimentary layer or fault) which 
reverses the particle motion. 
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3C Beamforming
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Input

One time window

N

E

Z

Three-component synthetic noise data

3C Beamforming
after Riahi et al. (2013)

one

frequency, 

one time 

window

𝑣 𝜃
= 𝑎0 + 𝑎1 cos 2𝜃 + 𝑎2 sin 2𝜃

+ 𝑎3 cos 4𝜃 + 𝑎4sin(4𝜃)

Output: Anisotropy Analysis

all time 

windows

Anisotropy Curve

(Kennedy et al., 2022) 

Wave characteristics

Beam power

Polarization
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Interpretation so far…
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The velocity of maximum 
normalised energy 
Retrograde Rayleigh wave 
= 1.684 kms-1

The velocity of maximum 
normalised energy 
Retrograde Rayleigh wave 
= 1.333 kms-1
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One time window, 

one frequency

The number of time 
windows (out of 15) 
Rayleigh waves were found.

Source A Source B

No fault 9 3

Fault 6 8
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(above is based on Rayleigh waves corresponding to maximum normalised response energy)

• Fault created Rayleigh waves, but it was not the only cause.

• Rayleigh wave particle motion direction changed with the presence of 

the fault. 



What’s next?
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• Further synthetic wave type analysis for all wave arrival 

times/azimuth. 

• Creating a synthetic anisotropy curve similar to real data below. 

• Continuing this for faults of different geological situations. 
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Overall summary:

• Numerical modelling can be used to generate Rayleigh waves.

• Rayleigh waves travel faster when travelling along the “water-
filled” fault. 

• 3C beamforming can help depict wave types, propagation velocity 
and direction.
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Any questions? 



Further reading/future talks:

Kennedy, H., Löer, K., and Gilligan, A.: Constraints on fracture distribution in the Los Humeros 
geothermal field from beamforming of ambient seismic noise, Solid Earth, 13, 1843–1858, 
https://doi.org/10.5194/se-13-1843-2022, 2022. 

• EGU23 Vienna: TS2.1-EGU23-5756, https://doi.org/10.5194/egusphere-egu23-5756

• EGC 1 Aberdeen: Day 3-Fault and Fracture Characterisation for the Energy Transition, 
https://www.energygeoscienceconf.org/technical-programme/

• PGRiP 2023 Aberdeen/Edinburgh: https://pgrip2023.wordpress.com/
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https://doi.org/10.5194/se-13-1843-2022
https://doi.org/10.5194/egusphere-egu23-5756
https://www.energygeoscienceconf.org/technical-programme/
https://pgrip2023.wordpress.com/
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• RSD FD Scheme: 

• Stability and dispersion criteria: 

In place to create stability in the model (due to amplitude increasing 
exponentially with every timestep). Numerical dispersion (frequency-
dependent velocity-based errors) is also an issue.

(a) Standard Staggered Grid 

(b) Rotated Staggered Grid 

Saenger et al. (2000)


