The Astonishing Simplicity of Offshore Energy (commercial) RISK MANAGEMENT

George Grangeon **Contracts & Business Development Consultant – JBS Engineering Group**

SPE Aberdeen Simplified Series 2016

Demystifying the Oil & Gas Industry for Professionals

Sponsored by

University of Aberdeen SPE Student Chapter Seminar The New Face of Oil & Gas Industry

Organized & Sponsored by

Aberdeen, February 5, 2016

Society of Petroleum Engineers Aberdeen Section

Aberdeen, February 3, 2016

Risk Management & Collaboration From a Business Perspective

SIMPLIFIED CONTEXT OVERVIEW

in a

Oil & Gas Industry - Part 1 - Where are we Now ?

A Project Management Strategy

The Case for Emphasising on Project Relationship Management :

Project owner – generally accepts additional costs, delays and revised specifications Supply Chain – generally obtains concessions and maintains positive margins

In essence

"Throw money at the problem" – (the perceived traditional O&G philosophy) Even though ...

The Project is likely to exceed original cost and schedule estimates and deviate specs. **i.e.**..

Business as usual which does not build on collaborative risk management may result in sub-optimal project management, lack lessons learned and poor decision management

CONCLUSION

A Relationship Management Project strategy can indeed work as an **effective** form of collaboration, albeit often at the expense of project **efficiencies**.

Oil & Gas Industry - Part 1 - Where are we Now ?

A Project Management Strategy

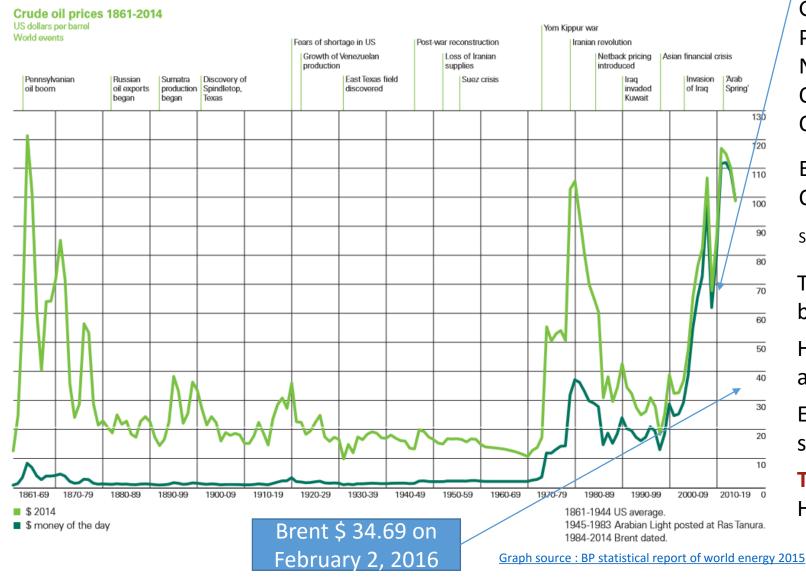
Tight Money

The Case for (expanding from) Emphasising on Project Relationship Management :

Project owner – generally disputes additional costs, delays and revised specifications Supply Chain – generally does not obtain concessions and margins erode

In essence

"No Money" – Project owner relies on Supply Chain accountability in delivering to agreed project objectives


i.e ...

Business as usual which does not build on collaborative risk management is likely to fail in a tight money environment

CONCLUSION

A Relationship Management strategy is likely to fail in a tight money environment unless it develops into an **effective** collaborative risk management strategy because risk and collaboration enhance project **efficiencies** - improving the quality of project management, lessons learned and quality of decision management.

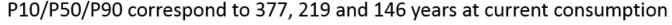
Part 2 Myth Busting – Oil is King vs. Oil is a Commodity

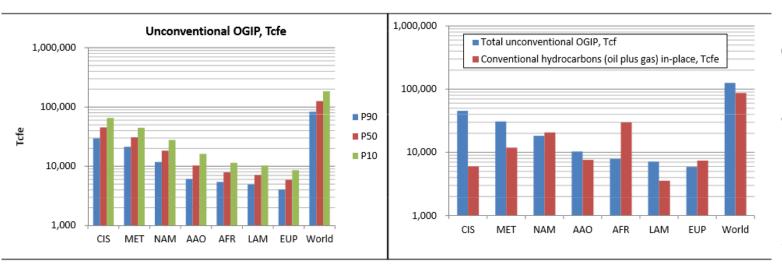
Energy Prices per Million BTU in January 2010

Gasoline	- \$17.81
Propane	- \$13.28
Natural gas	- \$5.69
Coal – Northern Appalachia	- \$2.08
Coal – Powder River Basin	- \$0.56
Electricity	- \$26.31
Corn ethanol	- \$23.46

Source: The Price of Energy – Forbes Magazine Jan 26, 2010

There is an apparent direct correlation between oil prices and political events.


Hydrocarbons and Electricity appear to enjoy a convenience fee.


Ethanol received est. USD 17 Billion in US GOV subvention between 2005 and 2009.

Thought: What is the market value of Hydrocarbons ?

Part 2 Myth Busting – Oil is Finite vs. Oil is Infinite

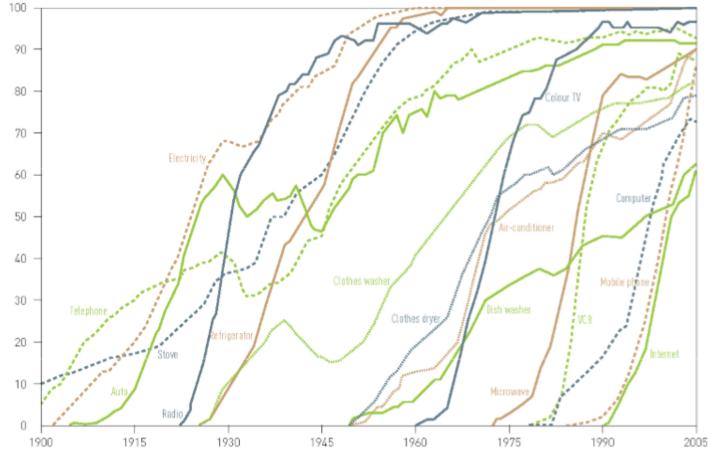
Worldwide Conventional And Unconventional Resources Are Essentially Infinite

"Conclusions

From using published assessments of 26 North American basins, published global assessments, and resourcetriangle-based methodology presented in this paper, we have developed a global estimate of unconventional gas in place with quantifying the uncertainty and conclude the following:

1. Estimated global unconventional OGIP ranges from 83,300 Tcf(P90) to 184,200 Tcf(P10). The P50 of our global unconventional OGIP assessments (125,700 Tcf) is 4 times greater than Rogner's estimate of 32,600 Tcf."

Dong, Z., Holditch, S., McVay, D., & Ayers, W. B. (2012, October 1). Global Unconventional Gas Resource Assessment. Society of Petroleum Engineers. doi:10.2118/148365-PA Worldwide Conventional and Unconventional resources estimates show an essentially unlimited resource.


Fact: Technology advances have lead to drilling, completion and production gains

Fact: Average Oil and Gas production rates per active rig have improved by a factor of 3.5

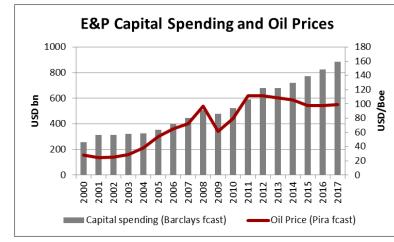
It has been reported in the press that some unconventional producers in the United States, have manged to lower production costs to USD 25/bbl. through technology and operational improvements

Thought: What is the market value of Oil ?

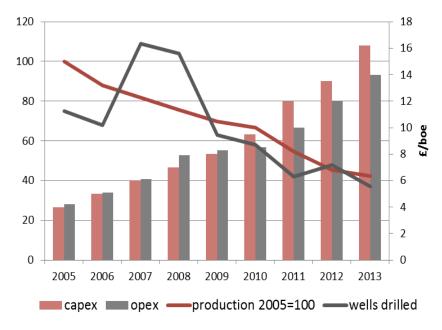
The slope of the curve of market penetration for new technologies is getting steeper from 35 to 45 year to 15 years or less.

Thought: Circa 75% of oil production is used for transportation and heating.

Fact: Considerable developments in capacitators for electric car batteries.


Fact: Considerable developments in renewable technology (solar, wind, nuclear fusion).

ExxonMobil forecasts 25% energy demand increase from 2014 to 2040.


Thought: is Oil and Gas heading toward extinction as an energy source, in a similar manner that Oil & Gas gradually replaced whale oil for illumination in the 19th and 20th century ?

Technology adoption curves for a range of modern innovations. Theoretical takeoff point at 16% market penetration. (Rogers 1962)

Part 3 – will easy money return to the UKCS Oil & Gas industry ?

Main indicators of UKCS performance

In June 2014 under a flat prices scenario, the proposed model predicted continual cost inflation and ballooning capital expenditure.

In 2016 prices have dropped dramatically and some reports indicate that the UKCS has become the most expensive basin to operate in.

Christopher Bird analyzed this data in June 2014, correctly predicting the following :

- $\checkmark\,$ More capital discipline at company level
- $\checkmark\,$ Large CAPEX need opens door for new financial investors

HOWEVER

 ✓ New instruments are more demanding and tailored to investors' <u>RISK PREFERENCES</u>

Assumption: it is unlikely that the UKCS and more generally the O&G Offshore Industry will remain sustainable without a paradigm shift toward collaborative risk management to improve the quality of Decision Management

Graphs and data sources extracted from a presentation to O&G UK titled: MAXIMISING ECONOMIC RETURN IN THE UK by Christopher Bird, CEO MOL UK Group on 11th of June 2014

Part 3 – Offshore Wind

Offshore Oil & Wind	Unit	Unit /	[′] USD	Conve	rsions	Unit Co	Retail Price	
Energy Equivalence	Unit	(LOW)	(HIGH)	MM BTU	kWh	(LOW)	(HIGH)	kWh
Oil (Price)	boe	\$	34.69	5.551	1699.41	\$	0.020	\$ 0.250
Offshore Wind (Cost)	kWh	\$ 0.22	\$ 0.30	0.003	1.00	\$ 0.216	\$ 0.302	Ş 0.250

The assumptions of the previous slide seem to hold true for both Wind and the Hydrocarbons Offshore Energy Industries

- ✓ Large CAPEX need opens door for new financial investors
- ✓ More capital discipline at company level
- ✓ New instruments are more demanding and tailored to investors' <u>RISK</u> <u>PREFERENCES</u>

Various factors are contributing toward increased investments in Offshore Wind despite the relative high costs and tight margins in offshore wind.

Offshore Wind operators have pushed back on the traditional offshore risk allocation models demanding increased Supply Chain accountability.

Tale data sources:

Oil Price based on Brent Price February 2, 2016 Offshore Wind Cost based on Low and High UK LCOE estimates in 2010 Energy Retail Price from Scottish Hydro on February 2,2016 for central Aberdeen GBP 1.00 = USD 1.44 on February 2, 2016

LCOE =	sum of costs over lifetime	$\sum_{t=1}^{n} \frac{I_t + M_t + F_t}{(1+r)^t}$
LCOE -	sum of electrical energy produced over lifetime	$\sum_{t=1}^{n} \frac{E_t}{(1+r)^t}$

The VUCA World Proposition*

68 Projects deferred total capex spend 380 BN
Delayed spend from 2016 to 2020 170 BN
2.9 M bdp deferred production to at least 2020
Average Gross breakeven of delayed projects \$ 62 boe

Volatility **V** Vision Uncertainty **U** Understanding Complexity **C** Collaboration Ambiguity **A** Agility

Would you agree that The Stone Age did not end because the Earth ran out of Stones ?

Would you agree that "*Imagination is more important than knowledge*" (Albert Einstein) ?

*Data extracted from a presentation delivered at Subsea Expo: by Christopher Bird, CEO MOL UK Group on 3rd of February 2016

Reasoning Simplified

Acergy Petrol

Risk Management and Reasoning

Two Questions

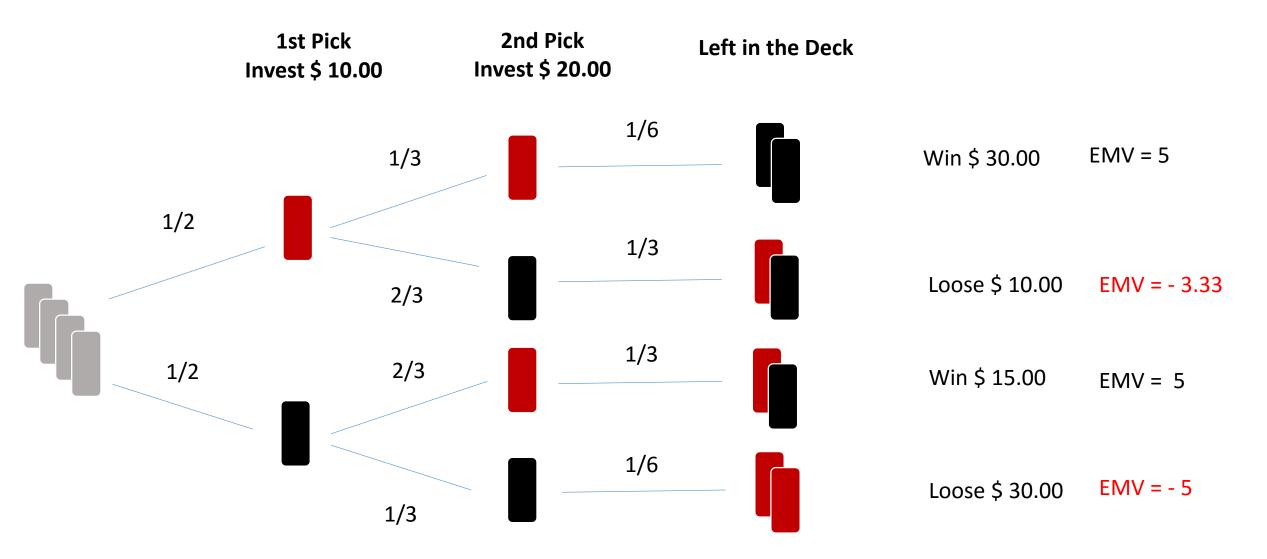
What is the business of Offshore Energy Operators ? What is the business of the Supply Chain to Offshore Energy Operators ?

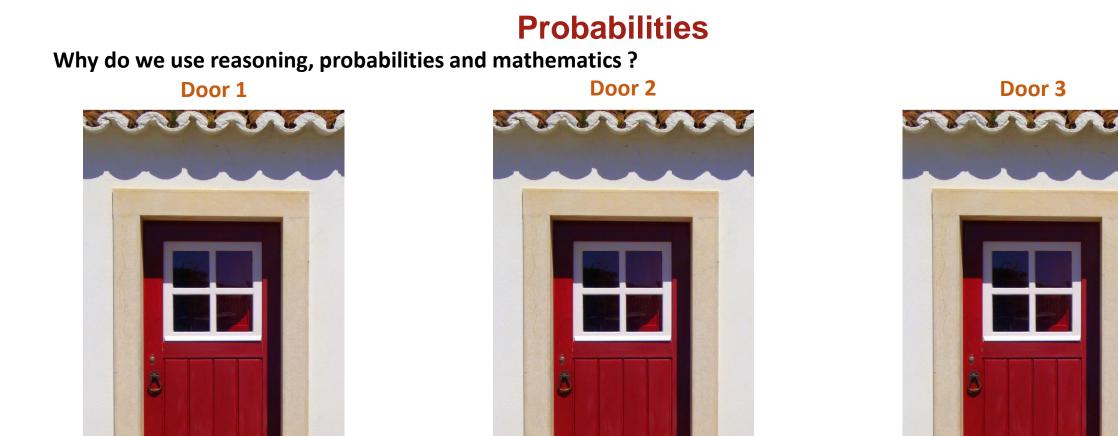
One Answer

The purpose of business is to generate financial returns to remunerate costs and satisfy shareholder returns.

Question

Is it generally accepted that in business there is a direct correlation between risk and potential financial returns?

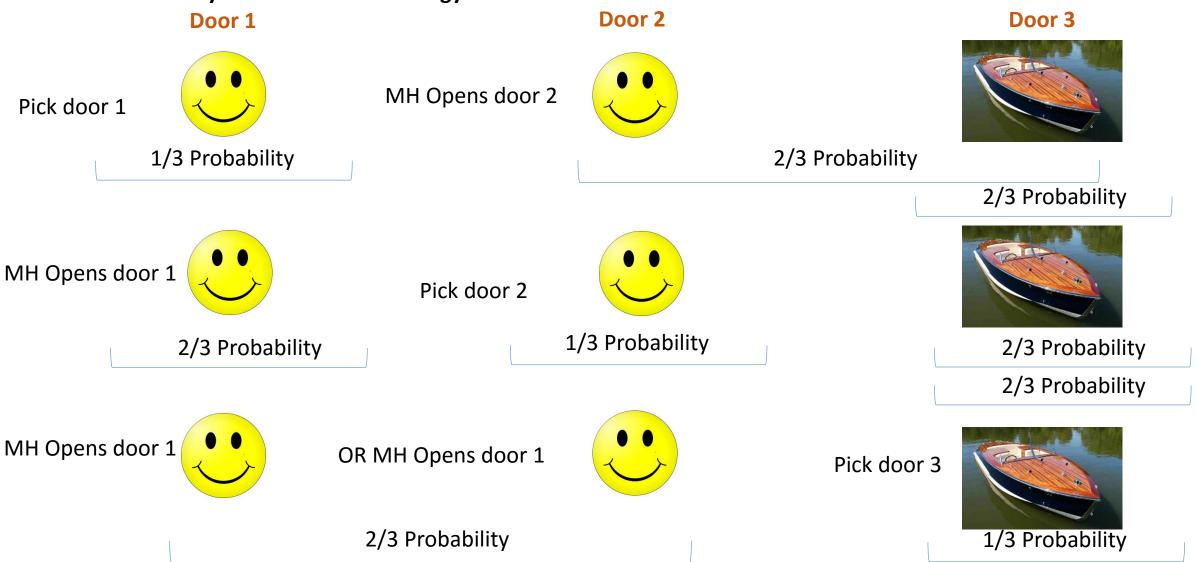

Answer


Yes, there is generally a direct correlation between risk and potential financial returns (reward).

Postulate in conclusion:

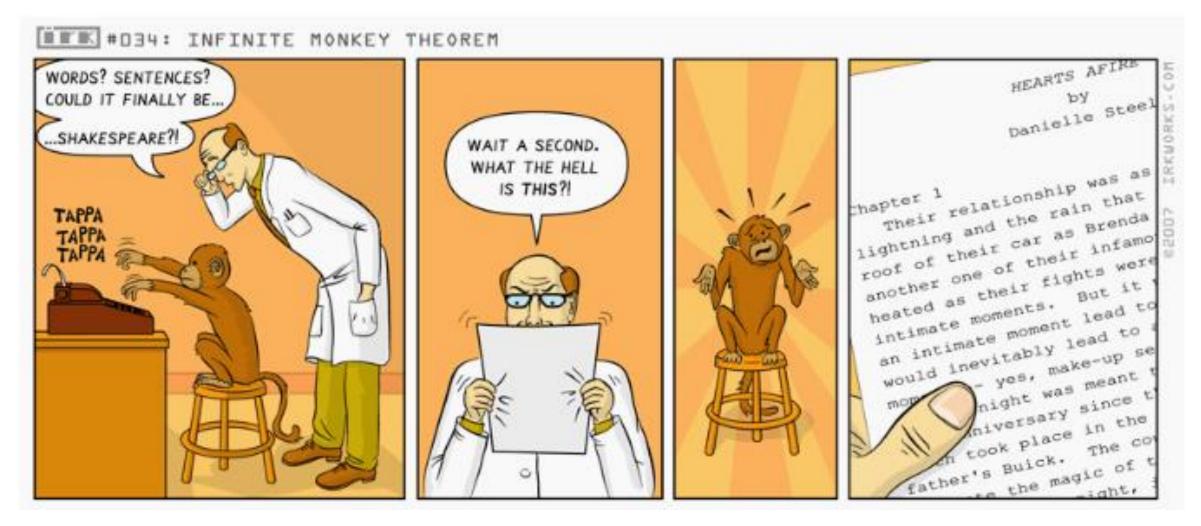
Offshore Energy Operators and Supply Chain are in the business of Managing Risk

What is Risk Management



Behind one of these doors there is a speedboat worth \$ 30,000 – please pick a door for free After you have picked a door I will open another door for you that does not hide the speedboat if you give me \$ 5 Given the new information given to you for \$ 5, will you elect to stick your original choice or switch ? Why have you chosen to stick your first choice or switch ?

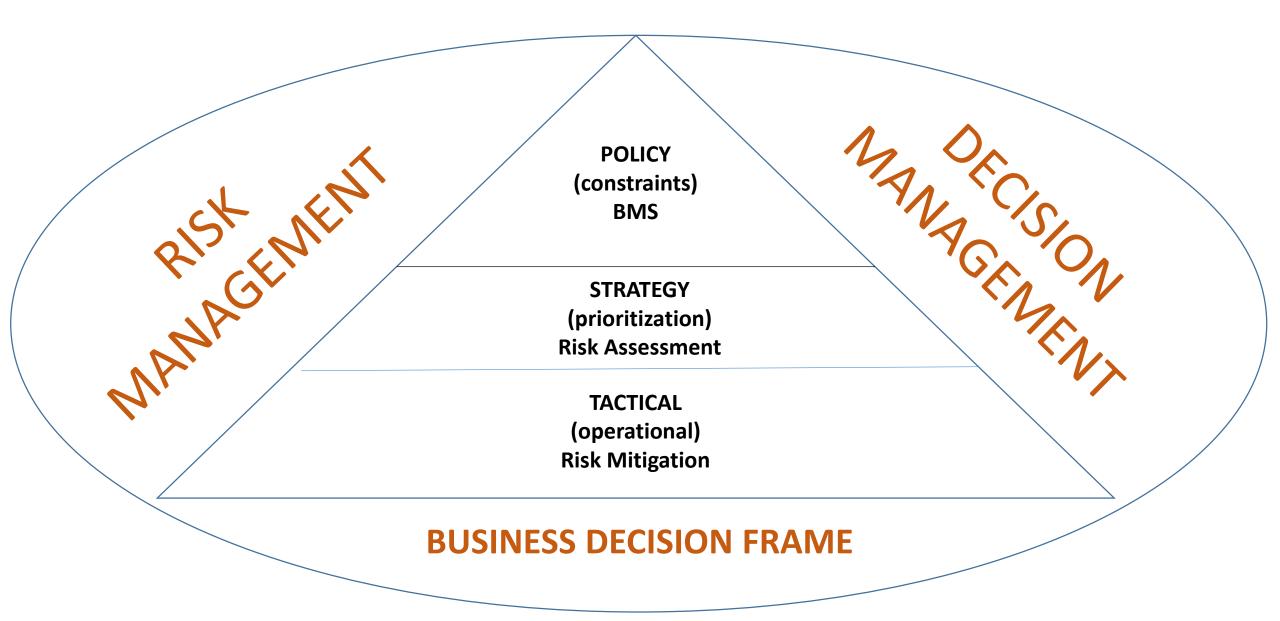
Probabilities – The Monty Hall Problem


Mathematically – the dedicated strategy should be switch !

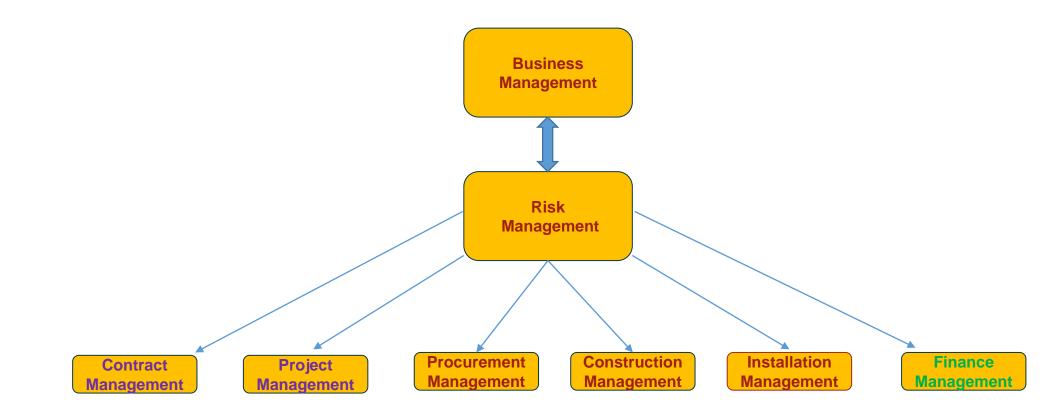
Switch should be your strategy because over time you stand 2/3 probability of winning

Probabilities

The risk of Analysis Paralysis


The Infinite Monkey Theorem is a proposition that an unlimited number of monkeys, given typewriters and sufficient time, will eventually produce a particular text, such as Hamlet or even the complete works of Shakespeare.

Business Risk Management



Business Decision Management

What is Quality Decision Management



Quality Decision Management

Offshore Energy Operators and Supply Chain are in the <u>business</u> of <u>Managing Risk</u>

Business Contracts

THE LAW AND BUSINESS CONTRACTS

BUYING A CHOCOLATE BAR AT THE SUPERMAKET (LAW)

BUYING AN OFFSHORE ENERGY ARCHITECTURE (CONTRACT & LAW)

Offshore Energy Industry – Risk Management – Contracting Principles

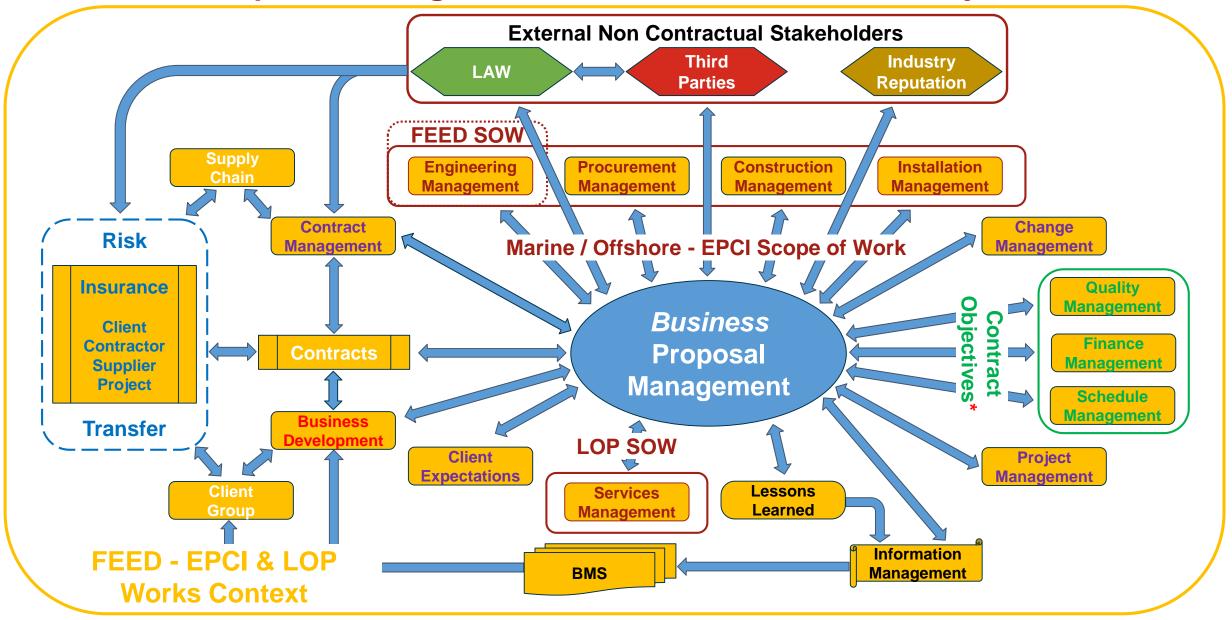
A Contract guides a formal business relationship between a buyer and a seller

A Company's Contracting Principles reflect its Risk Acceptance and desired Risk Allocation A Contract frames the accepted Risk Allocation between contracting parties

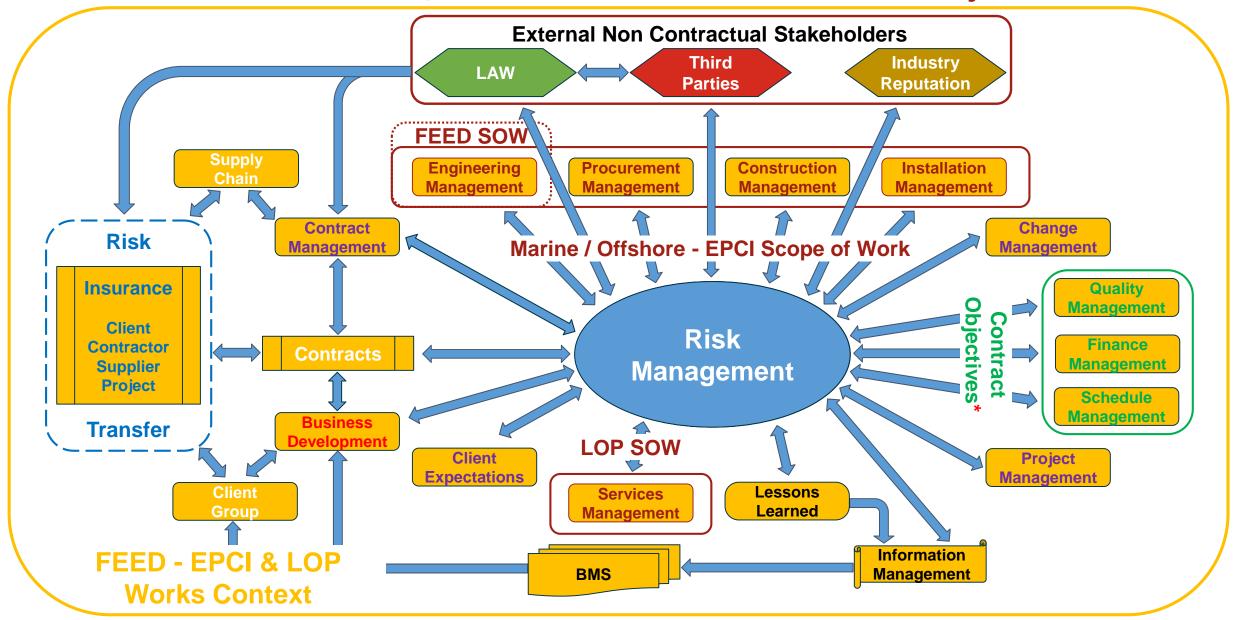
The International Marine <u>Contractors</u> Association (IMCA) <u>FAIR</u> * Risk Allocation goals

IMCA principles summarize the most common allocation philosophy desired by Offshore Project Contractors <u>Fair (not equal)</u> and realistic distribution of risk in proportion to relative rewards <u>A</u>llocation of risk – to the party best placed to assume <u>Insure – sufficient scope of cover</u> <u>Reasonable – avoid 'duplicate' assumptions of risk and minimise potential for dispute</u>

*Source – IMCA contracting principles (Risk and Contract work group)


The traditional Risk Allocation model is however being increasingly challenged by Offshore Oil & Gas and Offshore Wind Industry who are demanding increasing Supply Chain accountability

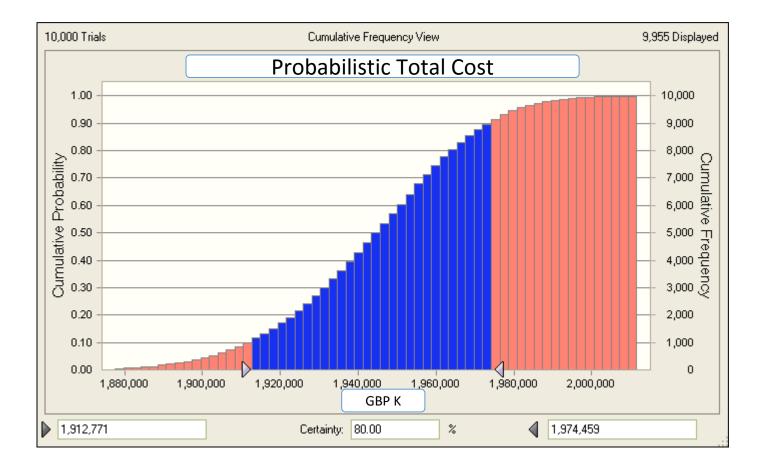
Offshore Energy Business Case & Project Risk Management Simplified



Proposal Management – FEED - EPCI & Life of Project

* Contract Objectives should align with Project Objectives **

Project - Management – FEED - EPCI & Life of Project


* Contract Objectives should align with Project Objectives **

* * Risk Management is Meeting or Exceeding Project Objectives

Note : There are extra slides in the simplified mechanics of Risk Management in this presentation

THANK YOU

Determining Contingencies – building an analysis model

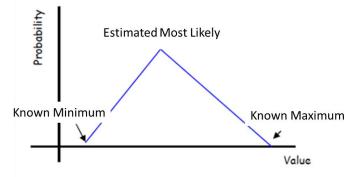
Is it correct to state that a budget is <u>measurement</u> of the estimated Cost, Time & the Resources required to execute a Project ?

What is the meaning of a measurement ?

"Any measurement that you make without the knowledge of its uncertainty is completely meaningless"

Professor Walter Lewin, Professor of Physics at MIT

What is the meaning of a **Risk Assessment**?


What is a **Model** ?

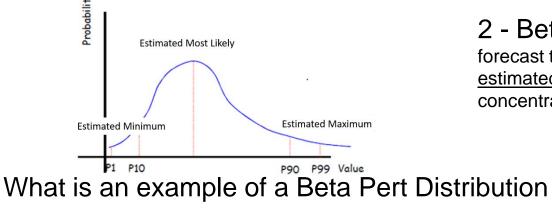
In Risk Management, Models are used for Risk Assessment

"all models are wrong, but some are useful"

George E. P. Box, *Mathematician / Statistician*

Extra Slides - Pricing Uncertainties & Risks Four Basic Distribution Functions Simplified

1 - Triangular 3 Point Estimate - Used when a best Most Likely estimate is known within a range to a <u>known</u> Minimum and a <u>known</u> Maximum.


What is an example of a Triangular Distribution

Remember: "*all models are wrong*, *but some are useful*."

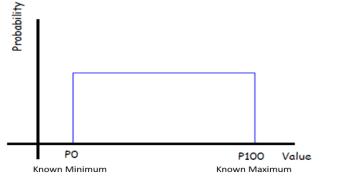
Roll o	f 2 Dice	
Sum	Probability	
2	2.78%	Known Minimum
3	5.56%	
4	8.33%	
5	11.11%	
6	13.89%	
7	16.67%	Known Likely / Peak
8	13.89%	
9	11.11%	
10	8.33%	
11	5.56%	
12	2.78%	Known Maximum

Four Basic Distribution Functions Simplified

2 - Beta Pert 3 Point Estimate – Used when a resulting value is forecast to lie within a range specified by an <u>estimated</u> Minimum and an <u>estimated</u> Maximum and assumption that the resulting value will tend to concentrate in the vicinity of the estimated Most Likely value.

Duration of Travel

Time


Day

Westhill Kingswells Bidge of Dee Contlaw Bieldside Banchory Devenick Cove Bay Map data @2015 Google

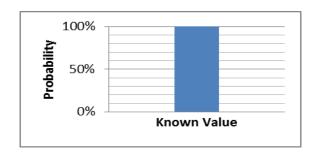
Likely Minimum 9 min 1 2 22 min 3 18 min 4 20 min Likely Maximum 5 45 min 6 19 min 7 15 min 8 10 min Likely Value 9 20 min 20 Minutes 10 21 min 11 19 min

Remember: "*all models are wrong*, *but some are useful*."

Four Basic Distribution Functions Simplified

3 - Uniform — Used when a Minimum and Maximum values are known and the Most Likely value is unknown and may occur with equal probability between the known Minimum and Maximum values

What is an example of a Uniform Distribution



What is the Likely duration of the ride ?

Maximum and Minimum ?

You tell me ... ???

Extra Slides - Pricing Uncertainties & Risks Four Basic Distribution Functions Simplified

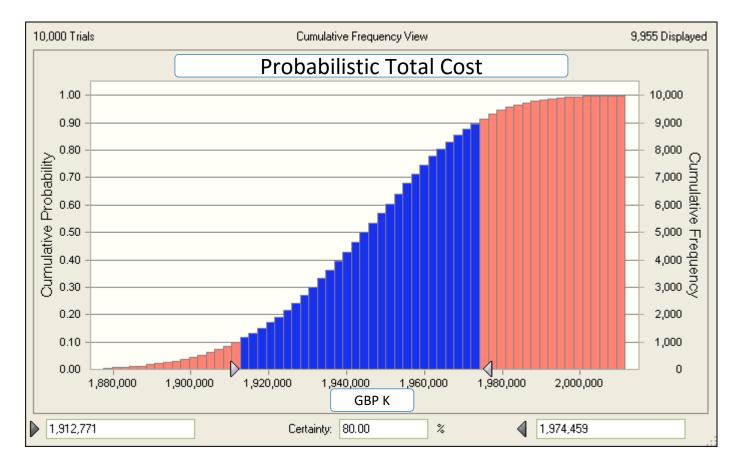
4 – Single Point - is a discreet distribution with a known impact value

What is an example of a Single Point Distribution

Two sides of the same coin ...

TAILS

Quantitative Risk Assessment


Example modified & adapted from actual Offshore Energy Works Contract

А	OPERATIONS																										
	Activity Name & WBS	Prob	Unit	-	t Cost		t Use		dget	MIN	LIKELY	MAX	Р	х			AINII					ELY			MAXII		
	WBS - EV002722E01A			K	GBP	K	GBP	K	GBP					~	Sc	hedu	ile	Cost	t K GBP	Scheo	lule	Cos	t K GBP	Sched	ule	Cost	<mark>K GBP</mark>
Vessel -	Campaign - The Grampian Opp	ortun	ity										_									,					
A1-01	Mobilization	U	£/day	£	229	day	4.1	£	939	0.95	1.00	1.05		1	d	ау	3.9	£	892	day	4.1	£	939	day	4.3	£	986
	Preparatory Works	U	£/day	£	229	day	3.0	£	687	0.95	1.00	1.20		1	d	ау	2.9		653	day	3.0	£	687	day	3.6	£	824
A1-03	Trenching	U	£/day	£	229	day	6.7	£	1,534	0.95	1.00	1.05		1	d	ау	6.4	£	1,458	day	6.7	£	1,534	day	7.0	£	1,611
A1-05	Installation Clamps	U	£/day	£	229	day	8.9	£	2,038	0.95	1.00	1.20		1	d	ay	8.5	£	1,936	day	8.9	£	2,038	day	10.7	£	2,446
A1-06	Preparatory Works	U	£/day	£	229	day	3.0	£	687	0.95	1.00	1.20		1	d	ay	2.9	£	653	day	3.0	£	687	day	3.6	£	824
A1-07	Demobilization	U	£/day	£	229	day	2.0	£	458	0.95	1.00	1.15		1	d	ay	1.9	£	435	day	2.0	£	458	day	2.3	£	527
Vessel -	Downtime - The Grampian Opp	oortur	nity																								
A1-18	Vessel Breakdown	0.1	£/day	£	308	day	31.0	N	N-A	0.95	1.00	1.20	0.1%	0	d	ay 2	9.5	£	9,071	day	31.0	£	9,548	day	37.2	£ 1	1,458
A1-19	Weather Risk	0.2	£/day	£	229	day	31.0	N	N-A	0.95	1.00	1.20	35%	0	d	ay 2	9.5	£	6,744	day	31.0	£	7,099	day	37.2	£	8,519
Vessel -	Downtime - The Grampian Opp	oortur	nity										_														
A1-21	Fuel Rechargeable (Rate 1)	U	£/m3	£ (0.251	m3	2,369	£	595	0.95	1.00	1.20		1		N-/	4	£	565	N	-A	£	595	N-	A	£	714
Vessel -	Personnel & Assets - The Gram	ipian (Opportuni	ty									_	2													
A1-26	Project Engineer	U	£/hour	£ (0.177	hour	157.9	£	28	0.95	1.00	1.20		1	d	ay	150	£	27	day	158	£	28	day	189	£	34
A1-31	Dive Supervisor	U	Lump	£	74	Lu	ımp	£	74	0.95	1.00	1.20		1		N-/	4	£	70	N	-A	£	74	N-	A	£	89
В	PROJECT MANAGEMENT																										
B1-01	Project Manager	U	£/hour	£ (0.124	hour	7,753	£	961	0.95	1.00	1.20		1		N-/	4	£	913	N	-A	£	961	N-	A	£	1,154
B1-02	Contracts Manager	U	£/hour	£	0.102	hour	7,345	£	749	0.95	1.00	1.20		1		N-/	۱	£	712	N	-A	£	749	N-	A	£	899
B1-03	Risk Manager (corporate O/H)	U	£/hour	£	0.117	hour	1,296	£	152	0.95	1.00	1.20		1		N-/	4	£	144	N	-A	£	152	N-	A	£	182
B1-11	Document Control	U	£/hour	£	0.051	hour	7,289	£	372	0.95	1.00	1.20		1		N-/	۱.	£	353	N	-A	£	372	N-	A	£	446
С	ENGINEERING																										
C1	WBS - EN002722E01C																										
C1-1	George Grangeon A	U	£/hour	£(0.189	hour	161.0	£	0	0.90	1.00	1.15		1	d	ay	145	£	27	day	161	£	30	day	185	£	35
G	DISCRETE RISKS																										
											Imp	act															

		(Impact Cost K GBP	Р	х
G-01	80% Probability underestimated procurement costs by 5% because of missed items	£	2,537.697	80%	0
G-02	90% Probability that logistics and transportation costs are underestimated by 10%	£	0.618	90%	0
G-03	5% Probability of fabrication delays resulting in additional costs of 1,000 K	£	1,000.000	5%	0

Quantitative Risk Assessment - S curves – Monte Carlo Analysis

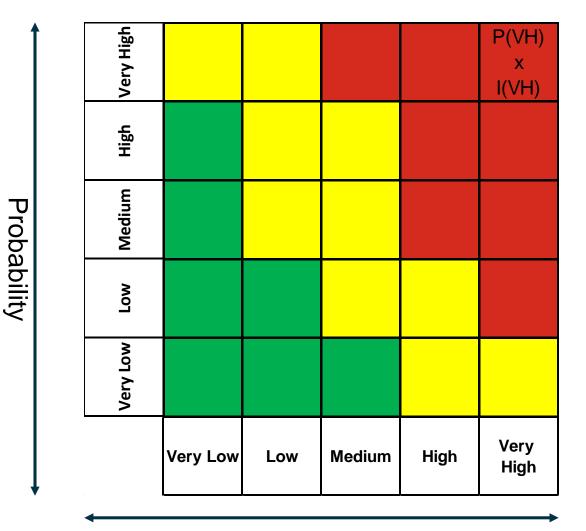
Example modified & adapted from actual Offshore Energy Works Contract

Example (if) : Deterministic Total Cost ≈ 1,930,000 Probabilistic Total Cost (P80) ≈ 1,965,000

P80 Cost Contingency \approx + 35,000 and Deterministic Total Cost \approx P30

Extra Slides – Qualitative Assessments

Qualitative Risk Assessment Step 1 - Risk Scoring Scheme Matrix


Probability

	QUALITA	TIVE ASSEESSMENT (CRITERIA	
Nomenclature	Probability	Cost Impact	Schedule Impact	Quality Impact
VERY HIGH	> XX % Occurrence is almost inevitable	> XX % Of Expected Returns	> XX Days Delay	Failure to achieve XX Specification
HIGH	XX % - XX % Occurrence is probable	XX % - XX % Of Expected Returns	XX - XX Days Delay	Failure to achieve XX Specification
MEDIUM	XX % - XX % Occurrence is possible	XX % - XX % Of Expected Returns	XX - XX Days Delay	Failure to achieve XX Specification
LOW	XX % - XX % Occurrence is low but credible	XX % - XX % Of Expected Returns	XX - XX Days Delay	Failure to achieve XX Specification bu within Tolerance
VERY LOW	< XX % Occurrence is not credible	< XX % Of Expected Returns	< XX Days Delay	Minor deviation from XX Specification

Impact

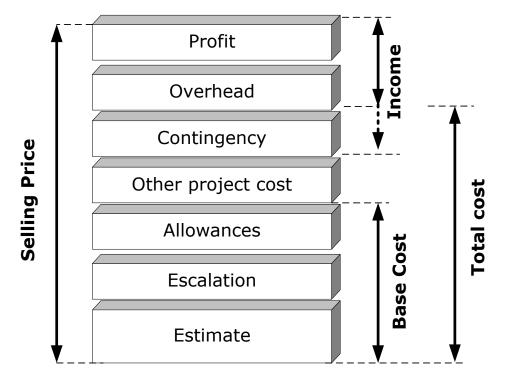
Extra Slides – Qualitative Assessments

Qualitative Risk Assessment Step 2 – Risk Heat Map

The Qualitative Risk Assessment Risk Heat Map is determined in accordance with the key (parameters) defined in the Qualitative Assessment <u>Risk Scoring Scheme Matrix</u>

Scoring Example :

if Probability Very High = 5 If Impact Very High = 5 Score = 25


Impact

Extra Slides – Financial Management

Selling Price – Cost - Income & Profit

The **Selling Price** is made up of two main components **Cost** and **Income**.

Cost comprises the project cost estimate, escalation, allowances and other project costs; **Income** comprises profit & overhead.

Component of price

Contingency is treated as a risk and therefore it can either be a Cost or an opportunity for additional profit and as such be treated as Income.

Extra Slides – Financial Management

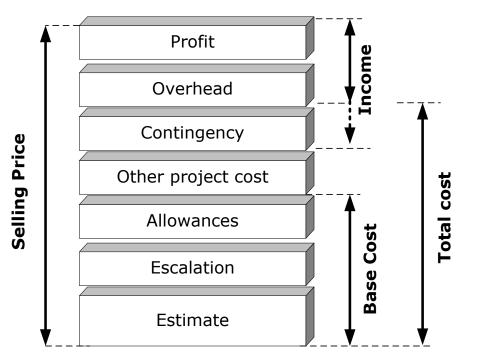
Selling Price – Cost

Estimate: is determined in accordance with the level of knowledge and pricing maturity of the company for the specific project deliveries.

Allowances: is the provision of a sum of money to cover variations to a project cost estimate (cost allowances) and /or project schedule (duration allowances) which based on past knowledge and experience we can anticipate will be required to complete that scope of work.

Escalation: is determined in accordance with the level of knowledge and pricing maturity of the company for the specific project deliveries.

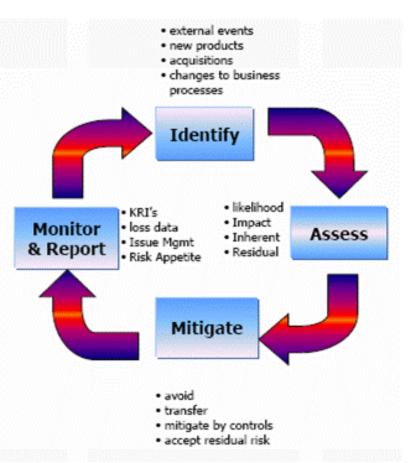
Other Project Costs: These are additional costs which are generally attributed to specific contract conditions and/or other financial requirements.


Contingency: is treated as a risk and therefore it can either be a Cost or an opportunity for additional profit and as such be treated as Income.

Extra Slides – Financial Management

Selling Price – Income & Profit

Overheads: are generally Territory Overheads and/or Corporate Overheads.


Profit: is the margin added either as a percentage or otherwise to arrive at the Client Selling Price. Review and approval of the selling price is decided by the Tender Board in light of market conditions and Company workload / performance.

Component of price

Contingency is treated as a risk and therefore it can either be a Cost or an opportunity for additional profit and as such be treated as Income.

Extra Slides – Risk Management Plan

If you don't frequently review your project Risk Management Plan you should probably review your project Decision Management Quality

Thank You George Grangeon Contracts & Business Development Consultant

george.grangeon@jbsengineering.co.uk Sea-Axe JBS Subsea Controlled Flow Multi Purpose Excavation System

Sea-Ax

Sea-Axe