

Society of Petroleum Engineers

Reservoir Engineering from Seismic to Surface

Mike Smith

5th April 2017

Content

Society of Petroleum Engineers

- Introduction into reservoir uncertainty
- Evolution of computer hardware
- Evolution of scalable subsurface software
- Case studies

Introduction – Reservoir Uncertainty

- Identifying the potential reservoir using seismic surveying
- Horizon picking by seismic interpretation
- Inferring large areas using limited data
 - Geological heterogeneity
 - Porosity and permeability distribution
 - Compartmentalisation
 - Fluid properties
- Trade off between time and uncertainty

Introduction – Simulation Demands

- Reliant on static & dynamic modelling of reservoirs
- Economic outlay of producing & recovering
 - Standard cost of North Sea Well ~ \$5 \$40million
 - HPHT can be \$ six figures!
- Reservoirs are demanding and complex
 - Rock properties, fluids and reservoir description, wells, surface network, compositional and thermal effects, EORs, etc.

Introduction – Simulation Demands

- Uncertainty analysis often skipped due to available resources and project timeframes
- Hardware and software bottlenecks
 - Compromising expensive data and model resolution

Society of Petroleum Engineers

Evolution of Computer Hardware

Hardware – Workstations

Society of Petroleum Engineers

- Multi-Core Processors
 - Cores no longer isolated by distributed memory
 - Shared memory system cores communicate directly
 - Fast interactions between cores
 - Equations can be solved directly at matrix level

Distributed Memory

Shared Memory

Hardware – Workstations

Society of Petroleum Engineers

Hardware – Clusters

Society of Petroleum Engineers

- Used across industries!
- Installed in regular office space
- Air conditioning & LAN connection

- 320 cores, 16 nodes
- Infiniband 56 Gb/s,
- RAM 2.048TB, 120TB disk
- Parallel speed-up ~ 80-100 times

Hardware – Clusters in the Cloud

Society of Petroleum Engineers

Evolution of Scalable Subsurface Software

Software – Workstations

Society of Petroleum Engineer

- Supercomputer with shared memory
- Parallel computing
- No Message Passing Interface required
- OS threads are ~10 times faster

Software - Architecture

Model: 3 phase model with 2.5 million active cells **Cluster**: 10 nodes x 20 cores = 200 cores

Conventional MPI

200 domains interchanging boundary conditions

Hybrid approach

10 domains interchanging boundary conditions

Software – Unlimited Scalability

Society of Petroleum Engineers

- 21.8 million active grid blocks
- 39 wells
- 512 nodes used
- 4096 cores

Software – GPU/CPU Development

- Society of Fettoleum Lingmeens
- Reservoir simulation historically all CPU based
- To switch fully to GPU is high cost of software programming and change of hardware for marginal gains (SPE 163090)
- GPU/CPU hybrid approach shows 2–6 times speed up against fully parallel CPU software
- Expected to see 10 x speed up in future

Same performance seen as 2-4 cluster nodes!

Software – CPU/GPU Testing

Society of Petroleum Engineers

Integrated Workflow – Seismic to Surface

SPE International

Society of Petroleum Engineers

Society of Petroleum Engineers

Case Studies

Society of Petroleum Engineers

Computer optimization of development plans in the presence of uncertainty

Key Objectives

- Carry out an independent production forecast targeting the P70 value of the NPV to avoid potential financial downside problems and maximize the asset value to the business
- Capture Uncertainty

Society of Petroleum Engineers

Computer optimization of development plans in the presence of uncertainty

Challenges

• Thousands of simulations required to capture various development scenarios with account for uncertainty

Society of Petroleum Engineers

Computer optimization of development plans in the presence of uncertainty

Solution

- 31 models were created in order to account for uncertainty
- 66,000 simulations ran over a six week period
- Different model realizations & development scenarios
- 31 nodes (each with 16 cores) cloud cluster solution utilised

Society of Petroleum Engineers

Computer optimization of development plans in the presence of uncertainty

Project Outcome

- Development scheme significantly optimized with less RE effort
- A much bigger export capacity (x3) was recommended
- NPV improved by 5% workflow added value estimated as £1bn
- Final well placements had interesting features that challenged the normal design process

Society of Petroleum Engineers

Computer optimization of development plans in the presence of uncertainty

History Matching of a waterflood in a heterogeneous Brent reservoir

Key Objective

 Locate remaining oil pockets of a poor quality brent reservoir, and quantify if any are large enough to warrant further development

Society of Fettoleum Engineers

History Matching of a waterflood in a heterogeneous Brent reservoir

Challenges

- Only 26% recovery despite 38 years of water-flood development
- Significant vertical heterogeneity and flow barriers
- Widespread belief that modelling of the field was so complex the results would always be of limited use
- 660k active cells, 70Gb per run

Society of Petroleum Engineers

History Matching of a waterflood in a heterogeneous Brent reservoir

Solution

- History matched the multi-layered model with realistic heterogeneity
- 550 sensitivity runs in 4 months
- 20 core parallel processing on workstation

Society of Petroleum Engineers

History Matching of a waterflood in a heterogeneous Brent reservoir

Project Outcome

- Determined the required heterogeneity to match local water breakthrough timing and water cut development
- Fully history matched model identified local thief zones with water breakthrough versus layers with remaining oil
- Main field locations with sufficient oil could be targeted

Society of Petroleum Engineers

History Matching of a waterflood in a heterogeneous Brent reservoir

Society of Petroleum Engineer

Integrated Uncertainty Quantification with multiple history matching predication cases

Key Objectives

- To find multiple realistic history matches for 3 conceptually different reservoir models representing P10, P50 & P90
- To create a probabilistic production forecast for a 25 year period, while capturing uncertainty

Society of Petroleum Engineers

Integrated Uncertainty Quantification with multiple history matching predication cases

Challenges

- Geological model and dynamic uncertainties
- Complex simulations
- Lack of tools for integrated uncertainty workflows
- Limited data and time

Society of Petroleum Engineers

Integrated Uncertainty Quantification with multiple history matching predication cases

Solution

- Project team built a unique integrated assisted history matching workflow involving static, dynamic and technological uncertainties
- More than 8000 realizations of the model ran in 2 days
- HPC cluster used with 2000 cores, 100 nodes

Society of Petroleum Engineers

Integrated Uncertainty Quantification with multiple history matching predication cases

Project Outcome

- 83 different realizations of the model with equally good quality were found
- Results made it possible to make comprehensive probabilistic forecast of the reservoir performance
- Drilling plan was reviewed with risk management

Society of Petroleum Engineers

Integrated Uncertainty Quantification with multiple history matching predication cases

Society of Petroleum Engineers

Thank you

mike.smith@rfdyn.com