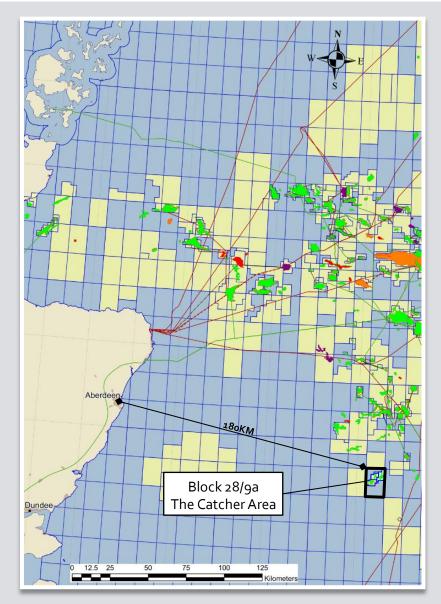
The Catcher Area Development

A Field Development Summary With Matt Gibson and Martin O'Donnell

Agenda


- Catcher Area Location
- Development Scheme
- Field Introduction
- Subsurface Introduction
- Well Design and Execution
 - Completion Design
 - Well Clean Up and Suspension
- Wrap Up

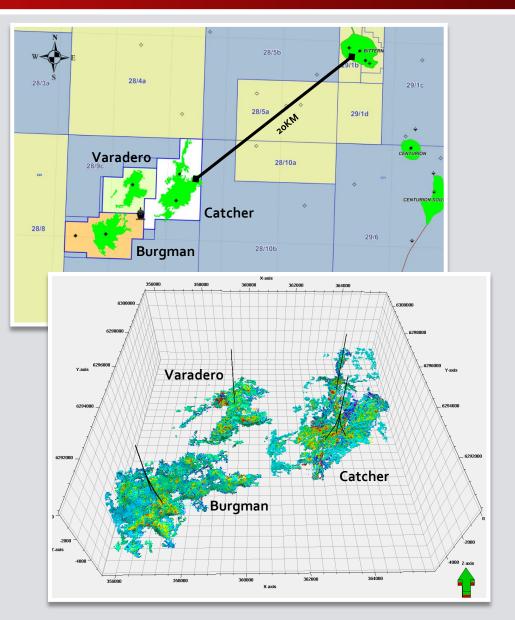
Catcher Area Introduction

- Block 28/9a
 - 180km ESE Aberdeen
- Central North Sea
- Western Terrace
- 11 E&A wells and side tracks
 - 6 field discoveries Catcher, Varadero, Burgman, Bonneville, Carnaby & Laverda
- Eocene Tay and Palaeocene Cromarty Reservoir
 - Spectrum of wholly injected reservoir sands through to remobilised and depositional
- Premier Oil 50%, Cairn 20%, MOL Group 20% and Dyas 10%

Catcher Area Development

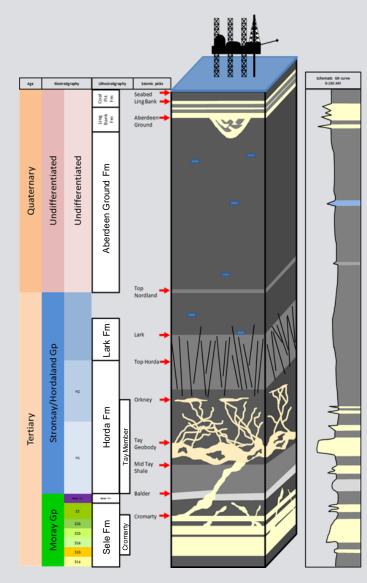
- Catcher, Varadero and Burgman Fields under development
- Production and Water Injection wells to be drilled from 3 drill centres
- FPSO production hub
 - Oil export by shuttle tanker
 - 125 bfpd liquid handling & injection capacity
 - 60,000 stb/d capacity
- Gas export to SEGAL FPSO Catcher Varadero Drilling Drilling Template 2 Template 2 Catcher Varadero Drilling Drilling Varadero Catcher Template 1 Template 1 Towhead Towhead Manifold Manifold Varadero Catcher Bundle Bundle Varadero Catcher **Riser Base Riser Base** Towhead Towhead Midwater Arch Curlew Catcher Jeep Gas Gas Export Langeled 44" Gas Pipeline PLEM CATS Everes/ Burgman IO Teessicky Bundle Burgman 6 Gas Pipeline **Riser Base** Towhead Garnet to Futma 16" Oil Pipeline Futmar to St. Fergus 20" Gas Pibeline Burgman Towhead Burgman Drilling Manifold Rockdump protection Template 2 Drilling Template '

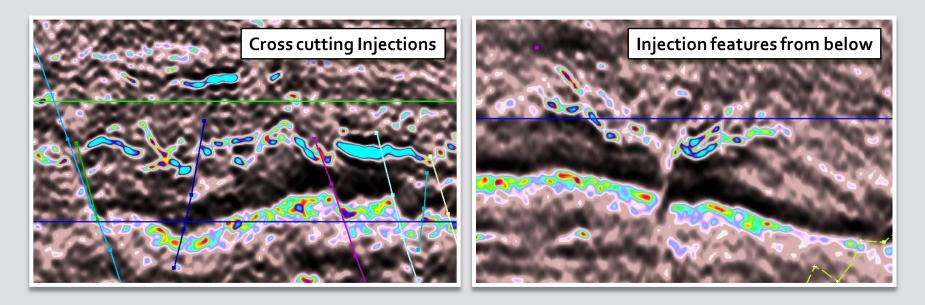
Purpose built FPSO – Module Installation in Singapore


BW Catcher – Module Installation

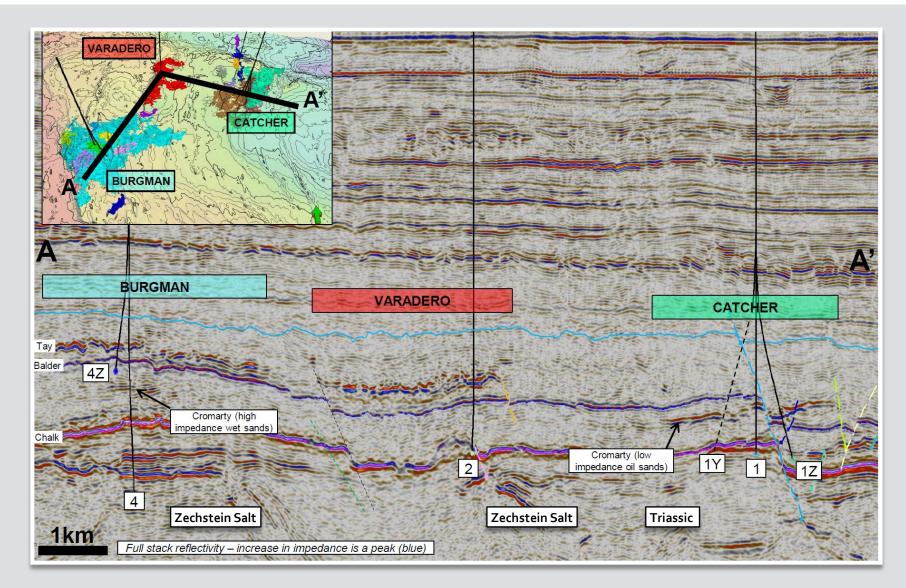
The Catcher Development - Oil Fields

Catcher


- Tay and Cromarty reservoir
- Juxtaposed across central NE-SW fault
- Deepest Field @ c 4,700 ft tvdss
- Varadero
 - Tay reservoir
 - Fault bound to west
- Burgman
 - Tay Reservoir
 - Fault bound to west
 - Shallowest Field @ c. 3,500 ft tvdss
- Underlain by Cromarty aquifer
 - Probable source of injectites
- Reservoir properties
 - Oil Density 25-31 API
 - Oil Viscosity 2-12cP
 - GOR 200 300 scf/stb
 - Normal pressured reservoir
- Reservoir Management
 - Injection for voidage replacement


The Catcher Area Fields – Geology Overview

- Initially deposited as turbidites, significant remobilisation and injection upwards to shallower levels subsequently
 - Encasing Shale hydro fractured in the process
- Tay Formation is largely injected sands and forms main reservoir across all 3 fields, Cromarty significant in Catcher Field
 - Typically reservoir thickness 20-4oft, locally up to approx 60-8oft
- Complex and unresolvable 3D architecture with sands present in all orientations with varieties of scales



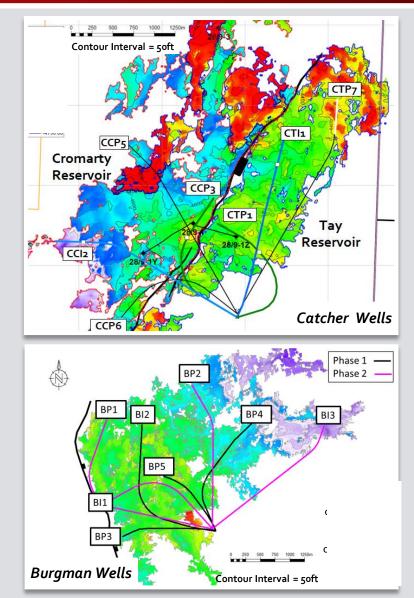
The Catcher Area Fields – Geophysics Overview

- Seismic data shows the gross container, the seismic amplitudes indicate the net pay
- Reservoir response is affected by tuning
 - Top reservoir / base reservoir / thickness uncertainty
 - Internal architecture poorly defined
 - Interference between different reservoir injections where present
 - Can't see shale clasts or rafts, and uncertainty over where reservoir bifurcates
- Often unable to see reservoir where it's thin, steep or water filled

The Catcher Area Fields – In The Seismic

Horizontal Development Wells

<u>Challenges</u>


- Shallow reservoir <4500ft TVDSS
- Significant directional work
 - Inclination change o° to 90 °
 - Up to 130° azimuth change
 - Maximum completion length 3,000ft TVDSS
- Attempting to land into a gross reservoir targets with inherent depth uncertainty
- Unknown internal net sand architecture

<u>Solutions</u>

- Point-the-bit RSS
- Top spec well position survey equipment
- Geosphere deep reading Azimuthal Resistivity
- Res-At-Bit proven extremely valuable
- Methodical pre-drill break down of well steering decisions

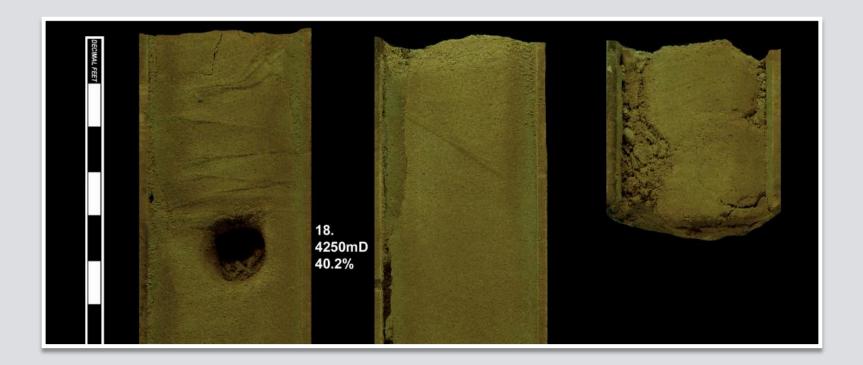
Results so far

• 7 wells on prognosis SPE – November 2016 | P10

Hole stability issue example – CTI1

Hydrofractured Shales

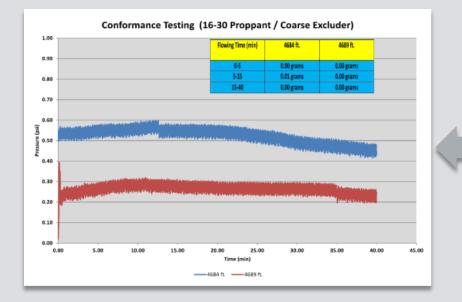
> Hydrofractured Shales



Stability issues Possible for wells?

Completion Design Challenges

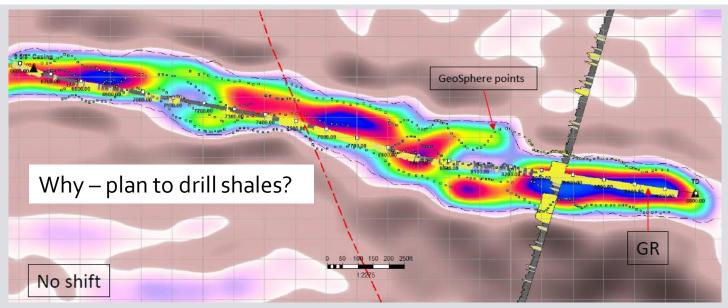
- Prevent sand production
- Deliver high productivity
- Preserve both for up to 2 year suspension



Sand Face Completion Design Process

- Statement of Requirements
 - Production & Inj Target Rates, Design life, Inflow monitoring (PDHG, Tracers)
- Core Testing
 - Strength measurements, Particle size distribution, Sand Retention Testing
- Fluids Testing
 - Shale sensitivity, Suspension issues, Oil leg Injection
- Desk top assessment of available technology
 - Open Hole Gravel Packs (OHGP)
 - Stand Alone Screens (SAS)
 - Expandable screens (ES)
 - Cased / perf & Frac pack
 - New technology

Sand Retention Testing

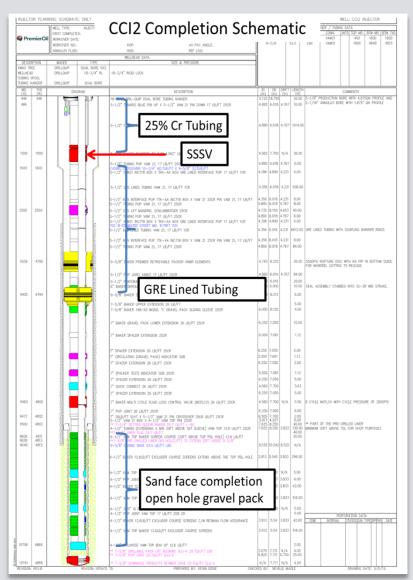

- Slurry testing = Non-compliant testing
- Coarse excluder screen shows no retention. c.50% of sand passes through screen.
- Medium excluder forms unstable pack. c.50% of sand passes through screen.
- In a cross flow or water hammer event expect sand to flow back into completion.

- Pack testing = Compliant Technology Test
- Confinement with 16:30 gravel and coarse (300 micron) excluder screen suggests very low potential for solids production.
- Results suggest compliant technology appropriate.
- Selected OHGP
- Also avoids resorting (of sand with c. 10 15% fines content).

Catcher Fluid Testing -Shale Sensitivity Testing

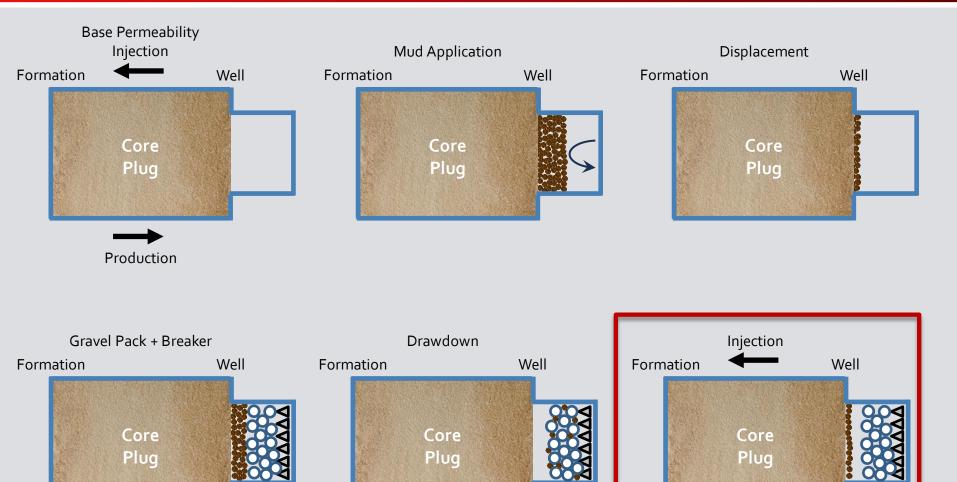
Below images illustrate potential for shale delamination during well completion operations

2 hrs Immersion in CaCl₂ Brine



Catcher shale sample after 24hrs CaCl brine

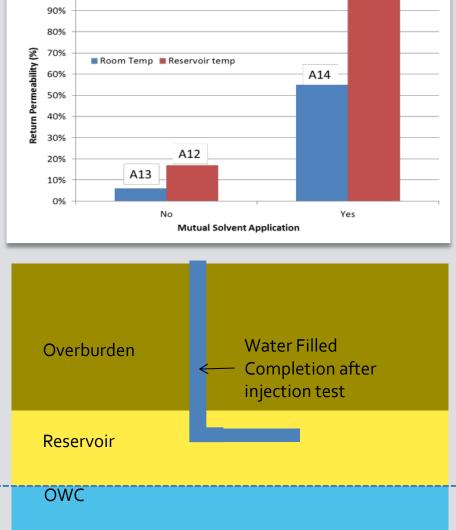
- Solution Run Pre Drilled Liner (PDL) to mitigate against shale swelling
- Screens run in brine


Well completion selection

- Selected OHGP & PDL
 - Compliant w/low solids risk + minimise shale risk
 - Run PDL in mud screens then run in brine
- Lwr completion includes inflow tracers
- Upper Completion
 - 13 cr / 25 cr+ GRE for producers / injectors
 - Gas lift in both
 - Chemical Injection
 - PDHG in producers, WHP/T in injectors
 - Fluid loss control valve to isolate SF completion whilst running upper
- OHGP Challenges:
 - 3,000 ft installations in PDL a world first
 - High skin risk
 - Perceived as unconventional for injectors
- Alternative well concepts:
 - Production history + 4D help understand production and injection performance.
 - Low angle C&P need large sump
 - Frac & Pack Long Horizontals, multiple geobody targets etc

SPE – November 2016 | P17

Full Sequence Return Perm Testing



Production

Oil Leg Water Injection Challenge

100%

- How can we best assure good injectivity at field start up?
 - Lab test the effectiveness of mutual solvent prior to well ops
 - Effectiveness of mutual solvent demonstrated in both in the lab and field

A15

- Possible wax formation in injection tubing during suspension
 - Swap out results in `cold' oil column.
 - May restrict injection at start up.

Well Suspension Strategy

- Oil Leg Injection Wells
 - Use mutual solvent to assure high injectivity at start up
- Injection Well Suspension strategy
 - Risk of wax formation in injection tubing
 - Displace to base oil
 - Also reduces hydrate risk
- Producer suspension leave hydrocarbons below tree

Well Clean Up Operations

SPE – November 2016 | P21

Successfully Delivering Across All Areas

- Fully integrated international project delivering on schedule
 - FPSO construction in South Korea and Japan assembled in Singapore
- Subsea infrastructure installation complete:
 - Bundled subsea lines + risers installed
- Ongoing delivery of development wells:
 - Successful geosteering using latest technology in challenging formations
 - All wells achieving or exceeding well objectives
 - Installation of 3,000 ft OHGPs successful
- Well testing / clean up and suspension:
 - Proven high quality sands
 - Suspension programme as planned to preserve well PI / II

Premier Oil acknowledge the Catcher Area Development JV Partners and thanks them for their permission to present to the SPE group

