

Understanding NMR

Geoff Page Baker Hughes Region Petrophysics Advisor

© 2017 BAKER HUGHES INCORPORATED. ALL RIGHTS RESERVED. TERMS AND CONDITIONS OF USE: BY ACCEPTING THIS DOCUMENT, THE RECIPIENT AGREES THAT THE DOCUMENT TOGETHER WITH ALL INFORMATION INCLUDED THEREIN IS THE CONFIDENTIAL AND PROPRIETARY PROPERTY OF BAKER HUGHES INCORPORATED AND INCLUDES VALUABLE TRADE SECRETS AND/OR PROPRIETARY INFORMATION OF BAKER HUGHES (DIDUEDS (VALUABLE) TANDE SECRETS AND/OR PROPRIETARY INFORMATION OF BAKER HUGHES (NEDERS)". BAKER HUGHES RETAINS ALL RIGHTS UNDER COPYRIGHT LAWS AND TRADE SECRET LAWS OF THE UNITED STATES OF AMERICA AND OTHER COUNTRIES. THE RECIPIENT FURTHER AGREES THAT THE DOCUMENT MAY NOT BE DISTRIBUTED, TRANSMITTED, COPIED OR REPRODUCED IN WHOLE OR IN PART BY ANY MEANS, ELECTRONIC, MECHANICAL, OR OTHERWISE, WITHOUT THE EXPRESS PRIOR WRITTEN CONSENT OF BAKER HUGHES, AND MAY NOT BE USED DIRECTLY OR INDIRECTLY IN ANY WAY DETIMENTAL TO BAKER HUGHES'. INTEREST.

NMR: Basic Principles

- Measures relaxation of hydrogen nuclei in fluids
 - Electromagnetic: No nuclear sources
- Measures fluid-filled porosity
 - Lithology independent
- Measures fluid type
 - Oil, water, gas: Volumes and properties
- Measures pore size
 - Texture information
- Compartmentalises porosity
 - Productivity

Magnetic Resonance

Hydrogen Atom

Properties

- 1 Proton
- 1 Electron
- Magnetic Dipole
- Spin (1/2)

How Does NMR Work?

Hydrogen in Fluids

6

Add External Magnetic Field B₀

Magnetic Field B₀

Nuclear Magnetization

When placed in a magnetic field, B₀, the ¹H protons align parallel and anti-parallel with the field

- The ratio of parallel to anti-parallel is: **100,006** : 100,000....
- It is the extra 6 parallel protons that produce the NMR signal that we measure
- This is (absolute K) temperature dependent = A calibration parameter

(0°K = -273°C)

Tipping Pulse

Nuclear Magnetization

- When the RF field is switched off the protons precess back to realign with B₀
- As they precess \perp^r they emit a small RF signal that is received in the RF antenna.
- This signal decays as they re-align with B₀

Larmor Frequency =
$$4258 \times \frac{Hz}{Gauss} \cdot B_0$$

Pulse Sequence

Pulse Sequence

Reversing Race!

Start/Finish!

Reversing Race!

Start/Finish!

Echo Train – CPMG Pulse Sequence

NMR Porosity

NMR Total Porosity = Mineral Independent

Sourceless Porosity

T2 Distribution

T2 Decay Components

- Bulk T_{2b}
 - Depends on fluid type
 - High viscosity = fast, a few ms.
 - Low viscosity = slow, 1000ms +
- Surface interaction with rock Surface/Volume ratio
 - Depends on pore sizes, and surface type
 - T2 = .5 1000 ms
 - Large pores = slower
- Diffusion T_{2D}
 - Depends on viscosity, Magnetic field gradient "G" and TE
 - Gas = fast, fluid = slow

MR Relaxation - T2 Decay Effects

Surface/Volume Ratio \rightarrow Pore Size

 In a single fluid filled pore the T₂ decay rate is inversely proportional to the surface/volume ratio of the rock being measured and directly proportion to the size of the pore.

Multi-Exponential Decay

A series of exponential decays are fitted to the data, resulting in the T2 distribution

T2 Pore Volumetric Distribution from NMR

Porosity - MR Analysis

NMR Log Data

Low Resistivity Pay Example (Non-laminated)

Thin Bedded Pay

Permeability

MR Permeability - k_{nmr}

Two **models** in use (Permeability is estimated not measured)

Correlation of k and T₂ Distributions

Core-Calibration

© 2017 Baker Hughes Incorporated. All Rights Reserved.

T1 Distribution

Polarization and TW

 NMR porosity is reduced if sufficient time (TW) is not allowed between "experiments" due to an incomplete polarization of the protons.

T1 Distribution Determination

0.00 <mark>.1</mark>

1

10

100

1000

Complete T₁ Recovery

0.00

10000

Gradient Magnetic Fields and Diffusion

- Diffusion during the pulse sequence causes a reduction in signal amplitude with time and decreases T2.
- A longer TE or higher gradient increases the effect.
- Multiple TE Measurements \rightarrow Diffusivity distribution

T2 Shift due to Diffusion

Instrument Magnetic Field Gradients

Gradient field tools:

- Measure Diffusion

N.B. All measurements are shallow 1-4" depth

LWD NMR in Drilling Environment

High Gradient

Low Gradient

Vibration Intolerant Vibration Tolerant

Hydrocarbon Affects

N.B. Techniques available to re-calculate 100% water saturated T2 from mixed fluids → Pore size Distribution

1D NMR – Simple Analysis of T2

NMR Fluids Response

N.B. T2 apparent can be corrected back to Intrinsic.

Estimated Oil Viscosity from MR

2017 Baker Hughes Incorporated. All Rights Reserved

T1 for Various fluids

- Water T1 depends on pore sizes (wetting phase)
 - Typically need 1-2sec
- Oil depends on API
 - Typically 5-6sec
- Gas depends on pressure, temperature
 - Typically 10-15sec

Delta Tw - Differential Spectrum

Dual TW Porosity & Saturation (LWD)

N.B. Shallow measurement

Fluids - T1/T2 Ratio and Diffusivity

Non-wetting oil phase:	T1/T2~1-1.5
OBM filtrate:	T1/T2~1-2
Dry Methane:	T1/T2~100
Richer gas:	< T1/T2 of methane

Wet gas, dissolved, condensates:

< T1/T2 of dry gas

	Bound Water	Moveable Water	Heavy Oil	Light Oil	Gas
T1	Very Short	Medium	Short	Long	Long
T2	Very Short	Medium	Short	Long	Short
D	Slow	Medium	Slow	Medium	Fast

2D NMR Maps - Oil or Water?

2D NMR Maps – Liquid or Gas?

2D NMR Results - Oil & Gas Reservoir

Porosity - MR Analysis

Magnetic Resonance Imaging

- Clinical MRI images are determined from -
 - Quantity of ¹H present in the specimen
 - Relaxation times present in the tissue

Other Applications

Pore size & Capillary pressure

Micro Scale Rock Model

Fontainebleau sst

Random, dense packing of equal spheres

Creating a numerical model and cross-section

Delaunay cell

Productivity Example: Oil Well

Grain Size – Geology and Completions

Summary

Petrophysics

- Mineralogically-Independent Porosities
- Pore Size Distribution (Single Phase Fluid Saturation) In mixed fluids
- Clay-Bound Water Volume, Capillary-Bound Water & Free Fluid Volumes
- Permeability In carbonates
- Fluid types, volumes, distributions, properties
- Capillary Pressures, Sw_{irr}

Reservoir Engineering

- Capillary Pressures
- Fluid changes
- Relative permeabilities
- Effective permeabilities
- Fractional flow
- Cumulative production prediction

Geology

- Grain size distribution
- Rock Fabric/Facies Characterization
- Mineralogy changes
- Cross-Correlation

Drilling and Completions

- Grain size
- Sand production
- Screen sizes
- Completion intervals
- Completion type
- Perforation modeling