The Subsurface Isolation Strategy: An Integrated Approach to Well Abandonment Planning

May 2017

Calum Hunter
Shell UK, Ltd
Objectives

- There are currently ~3650 wells on the UKCS to be Plugged and Abandoned (P&A). The estimated cost of P&A is currently estimated to be £19 billion, shared between operators and UK taxpayers.

- A strategic initiative to reduce P&A cost whilst meeting current regulations and industry guidelines (The Offshore Installations and Wells Regulation 1996, O&GUK Guidelines for the Abandonment of Wells, 2015) is in the integrated preparation of a Subsurface Isolation Strategy.

- An integrated Subsurface Isolation Strategy (SIS) is worked for every field to be abandoned, and addresses two critical decisions which influence abandonment design:
 - Which formations require isolation?
 - Reduction in number of plugs directly reduces P&A cost.
 - Within what depth range should these isolations be achieved?
 - Optimal placement of barriers reduces P&A cost by removing scope (eg, section milling production packers, or fishing).
 - Broadening the isolation depth range can enable further cost savings through added flexibility in P&A execution strategy (eg, to enable “through-tubing” abandonment).

- Across the Shell UK subsea abandonment portfolio, the total reduction in Abandonment Expenditure through integrated Subsurface Isolation Strategies exceeds £80 million, with significant further scope for savings through optimised execution strategy.
Subsurface Isolation Strategy Workflow

At desired reservoir isolation depths, is virgin* pore pressure less than fracture pressure?

Test

Assess Overburden Permeability Assessment
Review Wells in Abandonment Scope.
Fracture Gradient Review

Assess

Crossflow and Depletion Assessment to determine maximum reservoir pressure.

Impact Test
Crossflow and Risk Assessment: Review Plumbing Diagram

Decide
Reservoir Isolation Depth Range

Test
At desired overburden isolation depth, is Virgin pore pressure less than fracture pressure?

Assess
Overburden Flow Potential Assessment

If No Flow Potential
Assess
Crossflow and Risk Assessment to determine maximum overburden pressure

If No
Assess
Crossflow/Depletion Assessment: Review Plumbing Diagram

If Yes
Crossflow/Depletion Assessment to determine maximum overburden pressure

Construct Plumbing Diagram

* Consideration required for fields with injection (has reservoir been recharged to > virgin pressure?)
Subsurface Isolation Strategy Workflow

Overburden Permeability Assessment:
- Isolation cannot be achieved over permeable formations.
- Logging and drilling records evaluated to categorise overburden zones into ‘permeable’ and ‘non permeable’ zones.

Review Wells in Abandonment Scope:
- Isolation may be more challenging or costly at certain depths (due to presence of completion equipment, fish or integrity issues).
- Completion reports and previous well entry reports evaluated to determine isolation depths which could result in added cost or complexity.

Fracture Gradient Review:
- Overburden formation strength evaluated based on available LOT data, if available.
- If the reservoir has been heavily depleted, geomechanical modelling is conducted to assess possible impact on overburden integrity due to induced stress effects.
Isolation Test:
- Assume the reservoir is able to recharge to virgin pressure over the long-term.
- Virgin reservoir pressure is plotted against fracture gradient and overburden/well constraints.
- If an optimal isolation window exists on each well, provisional reservoir isolation depth range can be provisionally decided.
- If an isolation window does not exist, a “Crossflow and Depletion” assessment may be carried out, to evaluate likely reservoir recharge scenarios.
Subsurface Isolation Strategy Workflow

Isolation Test:
- Assume the reservoir is able to recharge to virgin pressure over the long-term.
- Virgin reservoir pressure is plotted against fracture gradient and overburden/well constraints.
- If an optimal isolation window exists on each well, provisional reservoir isolation depth range can be decided.
- If an isolation window does not exist, a “Crossflow and Depletion” assessment may be carried out, to evaluate likely reservoir recharge scenarios.
Subsurface Isolation Strategy Workflow

At desired reservoir isolation depths, is virgin* pore pressure less than fracture pressure? Test

Assess Overburden Permeability Assessment
Review Wells in Abandonment Scope.
Fracture Gradient Review

Test Crossflow and Depletion Assessment to determine maximum reservoir pressure.

Assess Overburden Flow Potential Assessment

If Yes Crossflow/Depletion Assessment to determine maximum overburden pressure

Assess Crossflow and Risk Assessment: Review Plumbing Diagram

If No Flow Potential

Decide Overburden Isolation Depth Range

If No

Construct Plumbing Diagram

PG Production Geology
PP Petrophysics
GP Geophysics
RE Reservoir Engineering
GM Geomechanics
PT Production Technology
WE Well Engineering

PG PG PP RE GM
PG PP
GM PG
PG GM
Subsurface Isolation Strategy Workflow

1) Assess initial pressure and crossflow capability of reservoirs of interest.

Reservoir D
- Initial Pressure: 10000 psia
- Max Volume: 5000 MMbbl
- Depletion: 0 MMbbl

Reservoir B
- Initial Pressure: 10000 psia
- Max Volume: 2000 MMbbl
- Depletion: 40 MMbbl

Reservoir C
- Initial Pressure: 13000 psia
- Max Volume: 4000 MMbbl
- Depletion: 0 MMbbl

2) Assess the range of possible connected reservoir volumes (using log/pressure data, and/or history matching as applicable).

3) Incorporate depletion/voidage data and construct material balance model.

4) Assess maximum recharge potential using material balance model.

NB: An assessment is required based on available subsurface data on whether recharge pressure can be safely lowered from virgin. The above workflow is indicative only.
Subsurface Isolation Strategy Workflow

Isolation Test:
- Following assessment of reservoir recharge pressure, another assessment can be made on whether isolation can be achieved at the optimal abandonment depth.
- In this example, it was assessed that maximum recharge pressure is sufficiently low that it does not exceed fracture gradient within the Upper reservoir caprock.
- Reservoir isolation depth can be provisionally decided at this stage.

[Diagram showing pressure vs. depth with various geological and engineering markers such as Upper Reservoir, Lower Reservoir, Non-permeable shale, Production packer depth, Isolation Window, Over-pressure, Multi-layered Reservoirs, etc.]
Subsurface Isolation Strategy Workflow

Overburden Flow Potential Assessment:
- Overburden sands which have been identified as permeable are assessed using log/seismic data and drilling records for indications of flow potential.
- A risk of flow potential is applicable in hydrocarbon bearing sands (which have a positive pressure differential to surface), or overpressured water-bearing sands.
- It is possible that there is sparse in-field overburden data. Data obtained from offset fields, or geological trends may assist in assessing flow potential risk.

Assess
- Crossflow and Risk Assessment: Review Plumbing Diagram

Impact Test
- Crossflow and Depletion Assessment to determine maximum reservoir pressure.

Assess
- Overburden Flow Potential Assessment: At desired overburden isolation depth, is Virgin pore pressure less than fracture pressure?

Test
- Assess: If No Flow Potential

Decide
- Overburden Isolation Depth Range

If No Flow Potential
- Assess: Crossflow and Depletion Assessment to determine maximum overburden pressure
- Assess: Review Wells in Abandonment Scope

Overburden Permeability Assessment:
- Overburden sands which have been identified as permeable are assessed using log/seismic data and drilling records for indications of flow potential.
- A risk of flow potential is applicable in hydrocarbon bearing sands (which have a positive pressure differential to surface), or overpressured water-bearing sands.
- It is possible that there is sparse in-field overburden data. Data obtained from offset fields, or geological trends may assist in assessing flow potential risk.

Assess
- Crossflow and Risk Assessment: Review Plumbing Diagram

Impact Test
- Crossflow and Depletion Assessment to determine maximum reservoir pressure.

Assess
- Overburden Flow Potential Assessment: At desired overburden isolation depth, is Virgin pore pressure less than fracture pressure?

Test
- Assess: If No Flow Potential

Decide
- Overburden Isolation Depth Range

If No Flow Potential
- Assess: Crossflow and Depletion Assessment to determine maximum overburden pressure
- Assess: Review Wells in Abandonment Scope

Fracture Gradient Review:

Reservoir Isolation Depth Range

Overburden Permeability Assessment:
- Overburden sands which have been identified as permeable are assessed using log/seismic data and drilling records for indications of flow potential.
- A risk of flow potential is applicable in hydrocarbon bearing sands (which have a positive pressure differential to surface), or overpressured water-bearing sands.
- It is possible that there is sparse in-field overburden data. Data obtained from offset fields, or geological trends may assist in assessing flow potential risk.

Assess
- Crossflow and Risk Assessment: Review Plumbing Diagram

Impact Test
- Crossflow and Depletion Assessment to determine maximum reservoir pressure.

Assess
- Overburden Flow Potential Assessment: At desired overburden isolation depth, is Virgin pore pressure less than fracture pressure?

Test
- Assess: If No Flow Potential

Decide
- Overburden Isolation Depth Range

If No Flow Potential
- Assess: Crossflow and Depletion Assessment to determine maximum overburden pressure
- Assess: Review Wells in Abandonment Scope

Overburden Flow Potential Assessment:
- Overburden sands which have been identified as permeable are assessed using log/seismic data and drilling records for indications of flow potential.
- A risk of flow potential is applicable in hydrocarbon bearing sands (which have a positive pressure differential to surface), or overpressured water-bearing sands.
- It is possible that there is sparse in-field overburden data. Data obtained from offset fields, or geological trends may assist in assessing flow potential risk.

Assess
- Crossflow and Risk Assessment: Review Plumbing Diagram

Impact Test
- Crossflow and Depletion Assessment to determine maximum reservoir pressure.

Assess
- Overburden Flow Potential Assessment: At desired overburden isolation depth, is Virgin pore pressure less than fracture pressure?

Test
- Assess: If No Flow Potential

Decide
- Overburden Isolation Depth Range

If No Flow Potential
- Assess: Crossflow and Depletion Assessment to determine maximum overburden pressure
- Assess: Review Wells in Abandonment Scope

Overburden Flow Potential Assessment:
- Overburden sands which have been identified as permeable are assessed using log/seismic data and drilling records for indications of flow potential.
- A risk of flow potential is applicable in hydrocarbon bearing sands (which have a positive pressure differential to surface), or overpressured water-bearing sands.
- It is possible that there is sparse in-field overburden data. Data obtained from offset fields, or geological trends may assist in assessing flow potential risk.

Assess
- Crossflow and Risk Assessment: Review Plumbing Diagram

Impact Test
- Crossflow and Depletion Assessment to determine maximum reservoir pressure.

Assess
- Overburden Flow Potential Assessment: At desired overburden isolation depth, is Virgin pore pressure less than fracture pressure?

Test
- Assess: If No Flow Potential

Decide
- Overburden Isolation Depth Range

If No Flow Potential
- Assess: Crossflow and Depletion Assessment to determine maximum overburden pressure
- Assess: Review Wells in Abandonment Scope

Overburden Flow Potential Assessment:
- Overburden sands which have been identified as permeable are assessed using log/seismic data and drilling records for indications of flow potential.
- A risk of flow potential is applicable in hydrocarbon bearing sands (which have a positive pressure differential to surface), or overpressured water-bearing sands.
- It is possible that there is sparse in-field overburden data. Data obtained from offset fields, or geological trends may assist in assessing flow potential risk.

Assess
- Crossflow and Risk Assessment: Review Plumbing Diagram

Impact Test
- Crossflow and Depletion Assessment to determine maximum reservoir pressure.

Assess
- Overburden Flow Potential Assessment: At desired overburden isolation depth, is Virgin pore pressure less than fracture pressure?

Test
- Assess: If No Flow Potential

Decide
- Overburden Isolation Depth Range

If No Flow Potential
- Assess: Crossflow and Depletion Assessment to determine maximum overburden pressure
- Assess: Review Wells in Abandonment Scope

Overburden Flow Potential Assessment:
- Overburden sands which have been identified as permeable are assessed using log/seismic data and drilling records for indications of flow potential.
- A risk of flow potential is applicable in hydrocarbon bearing sands (which have a positive pressure differential to surface), or overpressured water-bearing sands.
- It is possible that there is sparse in-field overburden data. Data obtained from offset fields, or geological trends may assist in assessing flow potential risk.

Assess
- Crossflow and Risk Assessment: Review Plumbing Diagram

Impact Test
- Crossflow and Depletion Assessment to determine maximum reservoir pressure.

Assess
- Overburden Flow Potential Assessment: At desired overburden isolation depth, is Virgin pore pressure less than fracture pressure?

Test
- Assess: If No Flow Potential

Decide
- Overburden Isolation Depth Range

If No Flow Potential
- Assess: Crossflow and Depletion Assessment to determine maximum overburden pressure
- Assess: Review Wells in Abandonment Scope

Overburden Flow Potential Assessment:
- Overburden sands which have been identified as permeable are assessed using log/seismic data and drilling records for indications of flow potential.
- A risk of flow potential is applicable in hydrocarbon bearing sands (which have a positive pressure differential to surface), or overpressured water-bearing sands.
- It is possible that there is sparse in-field overburden data. Data obtained from offset fields, or geological trends may assist in assessing flow potential risk.

Assess
- Crossflow and Risk Assessment: Review Plumbing Diagram

Impact Test
- Crossflow and Depletion Assessment to determine maximum reservoir pressure.

Assess
- Overburden Flow Potential Assessment: At desired overburden isolation depth, is Virgin pore pressure less than fracture pressure?

Test
- Assess: If No Flow Potential

Decide
- Overburden Isolation Depth Range

If No Flow Potential
- Assess: Crossflow and Depletion Assessment to determine maximum overburden pressure
- Assess: Review Wells in Abandonment Scope

Overburden Flow Potential Assessment:
- Overburden sands which have been identified as permeable are assessed using log/seismic data and drilling records for indications of flow potential.
- A risk of flow potential is applicable in hydrocarbon bearing sands (which have a positive pressure differential to surface), or overpressured water-bearing sands.
- It is possible that there is sparse in-field overburden data. Data obtained from offset fields, or geological trends may assist in assessing flow potential risk.

Assess
- Crossflow and Risk Assessment: Review Plumbing Diagram

Impact Test
- Crossflow and Depletion Assessment to determine maximum reservoir pressure.

Assess
- Overburden Flow Potential Assessment: At desired overburden isolation depth, is Virgin pore pressure less than fracture pressure?

Test
- Assess: If No Flow Potential

Decide
- Overburden Isolation Depth Range

If No Flow Potential
- Assess: Crossflow and Depletion Assessment to determine maximum overburden pressure
- Assess: Review Wells in Abandonment Scope
Subsurface Isolation Strategy Workflow

Overburden Flow Potential Assessment:
- If it is assessed that there exists no credible risk of overburden flow potential, no overburden barriers are specified.
- If there exists a risk of overburden flow potential, optimal placement of the overburden plug(s) is decided using the same workflow as that for reservoir barriers.

Assess

At desired overburden isolation depth, is Virgin pore pressure less than fracture pressure?

Test

Crossflow and Depletion Assessment to determine maximum overburden pressure

Assess

If No Flow Potential

Crossflow and Risk Assessment: Review Plumbing Diagram

Decide

Overburden Isolation Depth Range

If No Flow Potential

Crossflow and Depletion Assessment to determine maximum overburden pressure

Assess

If No

Review Wells in Abandonment Scope.
Subsurface Isolation Strategy Workflow

Impact Test (Review of “Plumbing Diagram”)
- During preparation of the SIS, a “Plumbing Diagram” is drafted and populated as more data is gathered. This gives an overview of overburden and reservoir formations, existing well penetrations, and previously abandoned (eg, E&A) well trajectories.
- By the end of the process, provisional reservoir and overburden isolation depths have been established. The plumbing diagram is inspected to assess whether any further isolations are required due to cross-flow effects.
- In the example below, further analysis would be conducted to determine likelihood of fluid leakage from the Upper Reservoir and Producer F, and hence whether additional isolation is required.
Summary & Acknowledgements

- A detailed understanding of what cost savings can be achieved (by removal or scope, or by application of technology) – and how this links to isolation depths – drives the subsurface work to be conducted early in the abandonment design phase.

- An integrated and well-defined subsurface isolation strategy is critical to the success of a well abandonment campaign, in that cost savings are maximised and risk of future release of reservoir fluids to surface is reduced to ALARP.

- Across the Shell UK subsea abandonment portfolio, the total reduction in Abandonment Expenditure through integrated Subsurface Isolation Strategies exceeds £80 million, with significant further scope for savings through optimised execution strategy.

- The authors would like to thank all of our colleagues and partners who have worked with us on preparation of Subsurface Isolation Strategies, and in preparation of the integrated workflow.