

Understanding Spatial Uncertainty for Drilling Sand Injectites

Nicholas Cooke, Adrian Merry and Claire Sherry

Maersk Oil UK

Agenda

- Introduction to sand injectites and motivation for the work
- Vertical uncertainty
- Lateral uncertainty
- Discussion

Introduction to Sand Injectites

Most recognised elements of a sand injection complex, modified from Hurst *et al.*, 2011

- Extrusions
 - Sand volcanoes and fissures

- Dykes
 - Discordant intrusions

- Sills
 - Concordant, tabular intrusions
- "Parent" or depositional sand

ΠĨ

Introduction to the Problem

Introduction to the Problem

Introduction to the Problem

CI Far Stack 30-36°

Vertical Uncertainty

COHIBA Workflow

All well picks + uncertainty

TWT surfaces + uncertainty Interval velocity surfaces + uncertainty

Velocity Uncertainty

- Depth residuals were used to generate an interval velocity standard deviation surface
- These are used to understand the uncertainty in the interval velocity

MAERSK

COHIBA Depth Conversion

Surface	Average (ft)	SD (ft)
B_Grid	7	33
T_Balder	0	21
T_Sele	-2	27

CI Far Stack 30-36°

4D QC of the Velocity Model

CI 4D 2011-1990 Old Velocity Model Vertical Exaggeration x2

CI 4D 2011-1990 New Velocity Model

Gas replacing oil

Water replacing oil

Lateral Uncertainty

Scale Factor Curves

Original

Vertical Exaggeration x5

Average Migration Velocity Model

Not much different to the original full stack seismic

Vertical Exaggeration x5

Understanding spatial uncertainty for drilling sand injectites | page 16

+1 Standard Deviation Migration Velocity Model

Vertical extension of the injectite is apparent (migration "smiles")

Vertical Exaggeration x5

-1 Standard Deviation Migration Velocity Model

 The injectite is not vertically extensive (migration "frowns")

Vertical Exaggeration x5

Injectite Geobodies for Lateral Uncertainty Workflow

 All bodies were mapped directly from their associated seismic data

 Key assumption for future work is that the same sand body is being mapped across all the volumes

How do we track and quantify the movement of the injectite body across all the volumes?

Injectite Geobodies for Lateral Uncertainty Workflow

• The normalised midpoint properties were summed to create a single property where the attribute value acts as a reference system (index attribute)

Index Attribute

- Index attribute was created for the same sand body on each migrated volume (same process as shown in the previous slide)
- Index attribute allows the tracking of points/clusters between the various volumes so that the lateral movement can be calculated

Lateral Movement Calculation

 The various injectite geobodies with their attribute reference system were converted to point sets and values were imported into Excel

attribute	
Orig remig_min remig_min remig_min	
X (m) Y (m) Attribute min -2.7 -2.8 X (m) Y (m) Attribute match row X (m) Y (m) Atx (m) Y (m) X external vector (m) X dx average (m)	-7.7
4200747 b5/92b5 2.9000001 max 2.9 2.9 4200747 b5/92b5 2.9000001 1 42007472 b5/92b5 0 0 0 0 0 0 0 x stoev(m) b	64.0
4200/4.7 65/9269 2.793/333335 4200/4.7 65/9299 0 25 25 25 4200/4.72 65/9299 0 25 25 25 4200/4.7	7.2
4200/4/ 05/205 2.05353521 4200/4/ 05/205 2.05/205 -25 0 25 -25 0 24 200/4/12 05/205 -25 0 25 -25 0 24 200/4/12 05/205 -25 0 25 -2	06.6
420047.7 6579290 2.02007012 420099.7 6579269 2.01016171 5 420074.72 6579269 0 -25 420074.12 6579269 0 -25 420074800000 -25 42000000000000 -25 42000000	90.0
4200/4/. 65/93/15 2.62260/03 4200/4. 65/93/15 2.6220/03 25 50 155 0016944 - 55.9016	10.6
420147.7 657026 2.500000 0 42045.72 057515 2.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	115.0
	13.3
Teoret - Construction - - Construct	
4201047 657967 52466667 42012412 0073010 20000172 100.0000172	
420124,7 6579290 2,42807007 420049,7 6579315 2,42583728 13 420074,72 6579290 -50 0 50 -50	

Discussion

MAERSK

DIL

Spatial Uncertainty Model

- Spatial uncertainty modelling has to be a combination of vertical and lateral uncertainty
- This information can be used in a range of scenarios:
 - Probabilistic volumetric calculations
 - Well placement
 - Geological target uncertainty
 - Decision making (e.g. the usefulness of a downhole tool with a certain depth of investigation)

Future Work

Full Stack Reflectivity (Mid case depth conversion)

Depth uncertainty horizons for the all bodies with all depth conversions

- Untidy results
- Difficult to interpret

However...

 Potential to represent all this information in a sand probability model based on spatial uncertainty?

Conclusions

Vertical uncertainty understood through velocity modelling and COHIBA

Lateral uncertainty understood through migration

• Results combined to understand the overall spatial uncertainty

Cost effective solution

Potential for future work

Thanks to Maersk Oil and TAQA

Thanks to colleagues Juestions?

