

**OIL & GAS** 

## **Risk-based abandonment of offshore wells** Examples and applications

**Buchmiller, David** Tuesday, June 27, 2017

#### Content

- Re-introduction to DNV GL RP-E103
  "Risk based Abandonment of offshore wells"
- Case examples of alternative P&A designs
- Reflections on current use



### **Background of Knowledge**

- DNV GL developed DNV GL RP-E103
  "Risk based Abandonment of offshore wells
- Based on industry feedback through a first revision Guideline
- 2 OTC papers and presentations
- A large number of industry presentations
- Both high-level and detail dialogs ongoing with operators in the North Sea and worldwide
- Ongoing discussions with regulators

|                                                                                                  | DNV.GL             |  |
|--------------------------------------------------------------------------------------------------|--------------------|--|
|                                                                                                  |                    |  |
| RECOMMENDED PRACTICE                                                                             |                    |  |
| NVGL-RP-E103                                                                                     | Edition April 2016 |  |
| Risk-based abandonment of offshore wells                                                         |                    |  |
|                                                                                                  |                    |  |
|                                                                                                  |                    |  |
|                                                                                                  |                    |  |
|                                                                                                  |                    |  |
|                                                                                                  |                    |  |
|                                                                                                  |                    |  |
|                                                                                                  |                    |  |
|                                                                                                  |                    |  |
| The electronic pdf version of this document found through ht<br>The documents are available free |                    |  |

#### **Rules and Regulations perspective**



Norway's regulations for petroleum operations offshore and on land are risk-based (ref. ptil.no)

- UK Verification Scheme
- Performance standards
- ALARP principles

Netherlands

- "Goal setting" intention
- NOGEPA initiatives

ISO 16530 Well integrity series -> risk based P&A

- Industry standards, throughout the world, prescribe the number, type and size of the permanent well barriers.
- The standards differ throughout the North Sea alone.

### Parallels to highway design code



 US highways are designed based prescriptive methods, such as xx" of cement.  German highways are designed to withstand a certain number of years of service.



#### Are all P&A wells the same?



## **Environmental perspective reflections**

- Oil from produced water released to the Norwegian Se North Sea – 1800 tc as a benchmark
   110 kg methane produced annually by 1 dairy cow
  - Leak rates from ca are significantly lc
- Natural seepage of ( North is a known ph comparison with cas
  - Methane release for NCS (2014)
  - Natural Methane keiease
    - Scanner pockmark 50
      Sm3/yr
    - Danish Kattegat 200 Sm3/yr



P&A Solution

Sample 1

P&A Solution

Sample 2

10000000

Gas Rates compared with natural gas seepage

P&A Solution

Sample 3

Danish

Kattegat

Safety Limit

P&A Solution

Sample 4

#### **Elements in well abandonment risk assessment**



#### **Risk Evaluation Tool – Risk Matrix**

|    |                      | Platform Safety<br>Risk                                |                                     | Long-term<br>Environment | Operational Risk                          | Increasing probability |                    |                    |                    |                    |
|----|----------------------|--------------------------------------------------------|-------------------------------------|--------------------------|-------------------------------------------|------------------------|--------------------|--------------------|--------------------|--------------------|
|    | Reputation           |                                                        | Time & Cost                         |                          |                                           | 1x10 <sup>-4</sup>     | 1x10 <sup>-3</sup> | 1x10 <sup>-2</sup> | 5x10 <sup>-2</sup> | 1x10 <sup>-1</sup> |
|    |                      |                                                        |                                     |                          |                                           | P1                     | P2                 | P3                 | P4                 | P5                 |
| 15 | Operator<br>specific | > 1 kg/s<br>hydrocarbons on<br>platform                | -                                   | Region specific          | Loss of both<br>barriers <sub>2</sub>     |                        |                    |                    |                    |                    |
| I4 |                      | > 0.1 kg/s<br>hydrocarbons on<br>platform <sub>1</sub> |                                     |                          | Loss of one<br>barrier 2                  |                        |                    |                    |                    |                    |
| I3 |                      | > 0.01 kg/s<br>hydrocarbons on<br>platform             | Operator<br>&<br>Region<br>specific |                          | Uncertain well<br>barrier condition       |                        |                    |                    |                    |                    |
| I2 |                      | Undetectable<br>hydrocarbons on<br>platform            |                                     |                          | Negligible well<br>integrity<br>situation |                        |                    |                    |                    |                    |
| I1 |                      | No hydrocarbons<br>on platform                         |                                     |                          | No impact                                 |                        |                    |                    |                    |                    |

1 Ref. NORSOK Z-013

<sub>2</sub> Ref. NORSOK D-010

 The proposed risk matrix is aligned with industry codes and operator best practice.

## Case A

- Subsea Template, 360m water depth
- Oil production with two reservoir zones, where the lower completion is exposed
- 180 200 bar pressures for P&A
- Two overburden zones (gas, oil)
- Overburden pressure profiles were normal, but volume uncertain
- No significant annulus leakages were observed and recorded
- No migration of overburden fluids and no hydrocarbons observed in environment



 Analyses was run to identify and optimize the required minimum permanent well barrier length

Results

- Lowermost permanent barriers towards the reservoir should remain the same as regulations prescribed, minimum of 30m interval with acceptable bonding and casing cement verified by logging and a 50m interval of formation integrity, ref NORSOK D-010, rev 4.
- Lower overburden zone was analyzed to give a minimum of 15m interval with acceptable bonding and casing cement verified by logging (including safety factors and uncertainty in the analysis).
- Upper overburden zone the result was a minimum of 18m interval with acceptable bonding and casing cement verified by logging.

### Case A







Primary barrier Secondary barrier Surface barrier

### Case A

|                          | Base Case | Alternative |
|--------------------------|-----------|-------------|
| Reputation               | Low       | Low         |
| Platform Safety          | N/A       | N/A         |
| Time & Cost              | Medium    | Low         |
| Long Term<br>Environment | Low       | Low         |
| Operational              | Low       | Low         |

 The alternative P&A design was selected as the required permanent barrier lengths, which could be used operationally to simplify decision making and to potentially lower operational costs and well P&A time.

#### Case B



- Fixed platform (160m water depth), dry XT
- Injection well in oil reservoir, the well slot will be re-used and sidetracked
- Two potential reservoirs with high production indexes
- Annulus pressure buildup observed, signs of leakage in the lower scab pack liners
- Setting permanent barriers in the base is a challenge, straight forward for the alternative case

#### Case B







Primary barrier Secondary barrier Surface barrier

|                          | Base Case | Alternative |
|--------------------------|-----------|-------------|
| Reputation               | Low       | Medium      |
| Platform Safety          | Low       | Low         |
| Time & Cost              | Medium    | Low         |
| Long Term<br>Environment | Low       | Low         |
| Operational              | High      | Low         |

- In this table, ALARP principles have been included to show the time & cost perspective.
- The most advantageous solution can then be selected, implemented and approved according to DNV GL-RP-E103.

#### **Summary**

- The methodology is in-use in the industry.
- Examples show that considerable savings can be achieved.
- DNV GL can assist in evaluating well abandonment design for optimization.
- "Fit-for-purpose " designs can be used rather than "one size fits all."



# **Risk-based abandonment of offshore wells**

**David Buchmiller** David.Buchmiller@dnvgl.com +47-46937716

www.dnvgl.com

SAFER, SMARTER, GREENER

18 DNV GL © 2015 Tuesday, June 27, 2017