Gannet – A Story of Recovery

DEVEX
Tuesday 9th May, Aberdeen AECC

Cliff Lovelock
Senior Production Geologist, Shell U.K. Limited
Gannet Historical Production 1992-2013
Gannet Historical Production 1992-2017

Hydrocarbon Production boe/CD

Oil
Gas
Agenda

Introduction to the Gannet Cluster
Building Confidence with Quick Wins
 Leverage your historical data
 Accept the risk
Success Breeding Success
 To grow you have to grow
Credible + Affordable = Achievable
Summary & Takeaways
Gannet Cluster – Key Facts
Gannet cluster, history

- UK PL P.013 (Blocks 21/25b, 21/30b & d, 22/21a & b & 22/26a)
 - Awarded 1964
 - Discovered 1969 (Gannet F – 21/30-1)
 - First Oil 1992 (Gannet A-D), 1997 (E & F), 1999 (G)
- Cluster of 7 fields tied back to Gannet Alpha platform
 - Gannet A accessible by platform wells, all other fields subsea tie-backs
 - Gannet E now disconnected
 - Estimated Total hydrocarbons initially in-place: 1,200 mmboe
 - Total production to date c. 500 mmboe
- Palaeocene and Eocene deep water mass flow sandstone reservoirs
 - Andrew, Forties, Tay systems, with locally significant reservoirs in Sele and Balder Formations
 - Located above or around salt high features on edge of Western Platform or in the West Central Graben
- High quality reservoirs
 - Up to 90% N:G; 22-34% ø; 100’s-1,000’s mD K
 - Powerful bottom drive aquifer in all fields (depletion of a few 100s psi over field lifetime)
Building Confidence with Quick Wins
Know your field

- 20 years of data collection put to good use
 - Contact tracking form RST/PLT logs
 - BS&W, WOR & GOR trend tracking from production data
 - 4D seismic data

- And know your geology
 - The Gannet A reservoir shales out to the south of the field
 - The geometry of the aquifer shields the south of the field from the bottom drive seen elsewhere.
 - Southern wells need a different WRFM strategy to optimise performance

![Northern Well Horizontal Regime](image1)

![Northern Well Recompletion Regime](image2)

![4D Amplitude Map of Water Sweep 2004 - 2011](image3)
Combining this data allows for a simple but elegant representation of how Gannet A works

- Initially all wells completed within oil rim
- The strong aquifer, coupled with gas injection intended to keep the rim in place
- The geometry of the aquifer (shaling out under the field to the south) leads to a wave of water pushing the oil rim to the roof in the north and evacuating the gas cap to the wells in the south
- The present disposition of the contacts in the field dictates the style of intervention best suited to optimise production

- In the north, complete the wells to the roof of the structure, shut off water from the original horizontal sections
- In the south, preserve the horizontal sections as long as possible to drain the oil
- ...while completing the upper part of the well to capture the gas as it flows past
Understand and communicate risk

- Present opportunities with their *risked* gains
- These are old wells you won’t get everything right first time
- So take the time to learn from those wells you don’t fix, to improve the risking next time
- Batch together as a campaign to allow the upside from one well to compensate for any failures
- Delivering on your promises below budget establishes credibility and earns you the right to try again – including re-entering wells that you weren’t successful with in this campaign
- The Northern Well we failed to restore in this campaign was successfully re-entered 6 months later and is now one of our strongest producers

Well/Activity

<table>
<thead>
<tr>
<th>Well/Activity</th>
<th>Actual vs. Planned Cost (% diff)</th>
<th>Risked Initial Oil Rate (bbls/d)</th>
<th>Actual Initial Oil Rate (bbls/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southern Well (RST & add perf)</td>
<td>+7.4</td>
<td>150</td>
<td>0</td>
</tr>
<tr>
<td>Southern Well (RST & add perf)</td>
<td>-44.4</td>
<td>870</td>
<td>1450</td>
</tr>
<tr>
<td>Mid-structure Well (RST & add perf)</td>
<td>-27.8</td>
<td>1660</td>
<td>1500</td>
</tr>
<tr>
<td>Southern Well Gas Lift Valve C/O (Integrity)</td>
<td>-13.1</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Crestal Well (flow through plug – Safeguarding)</td>
<td>-68.2</td>
<td>350</td>
<td>750</td>
</tr>
<tr>
<td>Northern Well (SSSV – Integrity/restoration)</td>
<td>-39.4</td>
<td>640</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>-28.5</td>
<td>3670</td>
<td>3700</td>
</tr>
</tbody>
</table>

9 May 2017
Well status on restart (August 2014)

- Active perforation
- Inactive perforation
- Estimated contact (2011 4D)

- Issue but can flow
- Water only
- Result to be confirmed
- Active no issues
- Unavailable (long term)
Well status today

- Active perforation
- Inactive perforation
- Estimated contact (2011 4D)

- Successful add perf
- Successful flow through plug
- Successful SSSV re-instatement (2nd go)
- Result to be confirmed
- Successful add perf
- Gas coning commenced post shut-in
- HWU on location

- Issue but can flow
- Water only
- Result to be confirmed
- Active no issues
- Unavailable (long term)
Success Breeding Success
Don’t forget about growth

- Gannet still has an inventory of growth opportunities, some of which are quite material
- GF03 is a target that had been identified from the first Gannet F 4D survey in 2006
 - Production from Forties Reservoir in north only (GF A01)
 - 4D indicated saturation changes in three reservoirs – Forties, Odin & Tay – on southeast flank of structure, confirming significant movable hydrocarbons
- Structural saddle between the accumulations meant significant volumes could be added by targeting area directly
- It was ready to spud in September 2011…
Don’t forget about growth

- Eventually completed in April 2015
- The well came on at nearly 20,000 boe/d
- Has now produced 6 mmboe and only recently started to cut water
- Unsurprisingly, we are working up our other targets in Gannet F
- And we are planning to acquire a further 4D monitor survey this summer to see from where GF A03 has produced

Don’t forget about growth

…Eventually completed in April 2015
The well came on at nearly 20,000 boe/d
Has now produced 6 mmboe and only recently started to cut water
Unsurprisingly, we are working up our other targets in Gannet F
And we are planning to acquire a further 4D monitor survey this summer to see from where GF A03 has produced
Credible + Affordable = Achievable
Gannet Subsea Infrastructure

- Gannet F (Aug 2011) pipeline leak due to Preferential weld Corrosion (PWC)
 - When the leak was identified, production from all Gannet satellite fields with similar pipeline construction was shut-in (all but Gannet D)
 - February 2013 – a pig was run through the oil export pipeline and became stuck behind a plug of wax
 - By-pass pigging had been in operation due to the known waxy conditions but was suspended due to low flow velocities (fields shut-in)
- To reinstate production
 - A new, corrosion resistant pipeline was installed to reconnect the Gannet F wells to the Gannet Alpha infrastructure (Nov 2013)
 - Gannet E, previously bundled in with Gannet F, was not reconnected at this time.
 - An 11km section of the oil export line was cut out and bypassed (Aug 2014)
 - Since process restart, a progressive pigging programme has been put in place with pigs being dispatched approximately every 10 days
 - Once production restarted, further pipeline reinstatement projects could be initiated…
Gannet C Gas Cap Blowdown

- Original FDP included blowing down the gas cap at the end of field life
- 2 wells (GC A104 & GC A404S1) drilled for this purpose in 2006
- Other producing wells have gradually been drowned
 - Only GC A204 – originally a gas injector – still producing. 1 further well – GC A202 – a candidate for flow
- Project to add perforations to the two blowdown wells
 - Split into 2 phases to allow assessment of field connectivity
 - Use of competitive scoping reduced project cost to ~25% of the 2013 cost estimate
- Gannet C pipelines were all red-banded after the GF pipeline leak
 - GC A2 line pigged late 2015 to demonstrate integrity
 - GC A104 connected to unused gas lift line (although, also required to be pigged before could be brought into service)
- Production performance shows GC A104 is not producing gas from east of diapir so Phase II (add perf in GC A404S1) is being planned…
Shell U.K. Limited

Gannet G Reinstatement

- Gannet G pipeline of same design as Gannet F.
- Taken out of service once Gannet F leaked
- To demonstrate integrity would require subsea pig handling capacity
 - This additional cost, coupled with an expectation that the pipeline would most likely need to be replaced meant that project was deemed to be unattractive
- Post oil-price downturn, reviewed options
 - Assumed replacement as base case – removing cost of subsea pigging
 - Selected 6” flexible pipeline as replacement
- Project planned for <25% of 2013 cost estimate
 - And was delivered under budget and ahead of schedule
- Field came back online 20th April 2017
Summary & Takeaways

- Make a commitment
- Build credibility
- Don’t forget to grow
- Affordable, credible…achievable
- Gannet has a future, and it is full of value restoring/adding projects
 - Gannet B restart
 - Gannet F 4D and further wells
 - Gannet D restart
 - Gannet C blow-down, phase II…

The author would like to thank Gannet partners – Shell U.K. Limited and Esso Exploration & Production U.K. Limited – for their permission to present this work and Gannet team members past, present and future for their contributions.