

Primary funding is provided by

The SPE Foundation through member donations and a contribution from Offshore Europe

The Society is grateful to those companies that allow their professionals to serve as lecturers

Additional support provided by AIME

Society of Petroleum Engineers Distinguished Lecturer Program www.spe.org/dl

Integrated Historical Data Workflow: Maximizing the Value of a Mature Asset

Anne Valentine Principal Instructor, Production Engineering Schlumberger (retired)

Outline

- Workflow
 - Data required
- Case Study
 - History
 - Initial underperformer identification
 - Water and formation damage indicators
 - Waterflood success
 - History Update
 - Results of interventions
- Summary and Conclusions

Opportunity identification more important than ever

- Low cost, quick techniques to identify opportunities, for example:
 - Well interventions: acid jobs, squeezes, recompletions, refracturing jobs
 - Wells to shut in or reactivate
 - Improved waterflood management
- Can be completed within a few days

Goal: Improve production / recovery at low cost

Source: The Digital Oil Field – Oil & Gas Investor – April 2004

What data do you need?

- Historical Dynamic Data
 - Monthly Production
 - Monthly Injection (if applicable)
 - Pressures
 - Well Events

Static Data

- Petrophysical: Permeability, Porosity, Net Pay, Initial Water Saturation
- PVT Properties

The workflow approach

Buell, Turnipseed, "Application of Lean Six Sigma in Oilfield Operations", 84434-PA SPE Journal Paper – 2004

Case study: A large waterflood

Ferrier field, Alberta, Canada

- Upper Cretaceous Cardium sandstone
- Low permeability
- Main waterflood area (303 wells)
- Original oil in place (OOIP) ~ 30 million m³
- Recovery factor (RF) ~19%

An outsider's "look-back"

Jones, McCord, Cummer, "Reservoir Simulation Pays Big Dividends", SPE 2428 Geological Atlas of the Western Canadian Sedimentary Basin – Chapter 23

Historical production

- Date: May 2010
- Base 10-year forecast
- Expected ultimate recovery (EUR) \rightarrow 6.33 million $m^3 \sim 21\%$ recovery factor
- Goal: optimize production at a low cost

DEFINE KPIS

Fundamental assumption

- Performance should be a function of reservoir quality
- How to define "reservoir quality"?
 - Flow capacity (kh) = Permeability x Net pay
 - Original oil in place (OOIP): proportional to hydrocarbon column (per well)
 - = Net pay x Porosity x
 - (1 Initial water saturation)

Definition of "performance"

- Oldest well: 48 years of production
- Newest: 2 years of production
- An old well, even a poor one, normally has higher cumulative oil than a new well.
- For this field, cumulative oil is not a good indicator of "good performer" versus "bad performer".

Other options:

- Current rate (if same age)
- Lifetime average rate
- Peak rate
- Cum prod at x years
- Cum prod / Cum prod days
- EUR (uncertain)
- Combination of above

Selected indicator of "performance"

- Smooth (moving average) oil rate and select best value
- Data quality control
 - removes noise and anomalous points

MEASURE KPIS, SELECT UNDERPERFORMERS

Initial underperformance identification

- Plot performance indicator vs. reservoir indicator
- Categorize wells and view on map

ANALYZE REASONS FOR UNDERPERFORMANCE

Possible underperformance reasons

Individual wells:

- Water production (overall water cut = 18%)
- Formation damage
- Wellbore or completion problems *
 - Perforations inadequate
 - Artificial lift restrictions
 - Surface constraints

Overall:

• Waterflood management

Water distribution

- Water production not <u>generally</u> a big problem
- Some individual wells increasing water cuts

Identify wells with above average water production

• Heterogeneity index (HI) compares each individual well with the group average

$$HI = \frac{VALUE_{WELL}}{VALUE_{GROUP.AVERAGE}} - 1$$

- HI = 0 for a well that behaves like the average
- Above average > 0, below average < 0
- Calculate a running sum to see long-term trends
- Plot of two HI values shows trends

SPE 36604: Completion Ranking Using Production Heterogeneity Index SPE 138229: Performance Model Analysis for Candidate Recognition

Underperformers with higher water production

Water control diagnostics

- Technique to diagnose water production behavior
- "Chan plot":
 - WOR (water-oil ratio)
 - WOR¹ (first derivative of water-oil ratio)
 - Versus cumulative days on production
 - Log-log scales
- Widely used
- Also applicable for WGR or GOR

SPE 30775: Water Control Diagnostic Plots Plus many later papers based on this

Water control diagnostics -Theory

Possible insight into water problems

Log Cum Days

Log Cum Days

Diagnosis of possible water source

Avoid misleading conclusions

Signs of formation damage

- For damage during drilling or completion
 - Formation damage index (FDI) may be low
 FDI = Q / kh = oil rate / flow capacity
- For damage anytime
 - Gas/oil ratio (GOR) may be high due to pressure drop across damaged zone
 - Gas comes out of solution in the wellbore

Formation damage indicators

- Previous
 colour coding <u>E</u>
- Potentially damaged wells marked

Locations of damaged wells

28

Other reasons for underperformance

- Waterflood management is crucial
- Voidage replacement ratio (VRR)
 - = injected volume / produced volume
 - Volumes include oil, water and gas and are expressed at reservoir conditions
 - Target VRR = 1.0

Voidage replacement ratio

- Waterflood as a whole is quite well balanced
- May 2010:
 - VRR = 1.17
 - Cum VRR = 1.03

Pattern voidage replacement ratios

Increase injection rate Well balanced **Cumulative VRR** 0.2 - 0.80.8 - 1.21.2 - 2.0 2.0 - 8.0

Decrease injection rate

Possibly stop injection

Injector analysis – Hall plot

- Skin analysis technique for injection wells
- Y-axis = Hall coefficient
 - = $\sum (\Delta \text{pressure x } \Delta \text{days})$
 - 1 = Damaged well
 - 2 = Gradual plugging in well
 - 3 = No change, no plugging, no damage
 - 4 = Stimulated well or sudden channeling

Cumulative Water Injection

Hall, H.N. "How to Analyze Waterflood Injection Well Performance", World Oil (Oct. 1963) 128-130

Example injectors

• All types are commonly found, particularly type 2

Hall plot slopes

- All injectors are shown
- Steeper slopes mean more resistance to injection

Injectivity relationship to flow capacity

- We expect injectivity to be related to flow capacity
- Overlay resistance to injection on KH grid map
- Not always related investigate further

TAKE ACTIONS, MONITOR, LEARN FROM RESULTS

Three years later: May 2013

- Interventions done in 2010 2011 in 40 wells identified here as underperforming
- Impact on field total to date

 → gain of ~ 60,000 m³
 compared to original
 forecast = rate increase of
 57 m³/d
- Increase in EUR → ~ 220,000 m³
- Projected recovery factor
 ~21% → ~22%

Formation damage candidates

 Example well with intervention: gain ~1150 m³

High water candidates

- No squeezes were carried out
- Higher cost intervention
- Problem was not severe

Injection changes – Balance waterflood

- Injector interventions unknown, field VRR changed little
- Some injection rates were decreased
 - 2010: 1082 m³/d
 - 2013: 768 m³/d

Results with vs without interventions

- Producers with interventions (40)
- Gain ~ 40,000 m³

- No interventions (95)
- Gain (maybe due to waterflood balancing) ~ 20,000 m³

Results

- Underperforming wells identified in a short time (2 to 3 days)
 - Producers potentially damaged wells
 - Injectors plugging and/or resistant to injection
 - Patterns where to increase / decrease injection?
- Action taken on 40 underperforming wells
- Some injection rate adjustments
- Gain in reserves ~ 220,000 m³ (1.4 million bbl)
- Cash flow improved, life cycle extended

Conclusions

- This workflow is
 - Simple and effective
 - Flexible, can be adapted to multiple reservoir / field types
 - Able to handle huge amounts of data
- Key is to determine appropriate performance indicators with built-in quality control
- Demonstrates value of historical data
- Can result in production gains

Your Feedback is Important

Enter your section in the DL Evaluation Contest by completing the evaluation form for this presentation Visit SPE.org/dl

Society of Petroleum Engineers Distinguished Lecturer Program www.spe.org/dl

Backup

Selection of performance KPIs – test Cum Oil

Selection of performance KPIs – test Cum Oil at 2 yrs

Selection of performance KPIs – test peak rates

49

When did marked wells start production?

- Wells still producing in 2010 only
- Note most possibly damaged wells are recent

Downdip, vintage, net pay

Water control diagnostics -Theory

For a high rate well (e.g. 20 Mb/d) in good reservoir, the cone could reach > 200 ft high with width > 200 ft!

Possible Water Coning

Further evidence of coning: When liquid production rate drops, WOR also drops.

Water control diagnostics -Theory

HI - Gas field example

Workflow – Define, Measure & Analyse stages

Selection of completion KPIs

- Two wells, same reservoir quality we expect better performance from "better completion"
- Completion indicator depends on data available
- Vertical / deviated / horizontal
- Meters perforated / open
- Frac job data (e.g. fluid volume)
- A combination (e.g. fluid volume / completion length)
- NOTE: not analyzed for case study due to lack of data

Shale gas example completion KPI

How performance indicator changed with time

- What could cause performance to be better with newer wells?
- Usually -Better technology (drilling or completion)

Compare Cardium Injectivity to Another Formation

Additional workovers done

- Six workovers done among the Expected group
- Results: rate increases with fastèr declines

Underperforming
 Overperforming
 High water
 Damage?
 Additional

Example well

