

Robust Autonomous Flow Control Developments in Norway

Presented at SPE Inwell Flow Conference Aberdeen Oct. 3, 2017

Bernt S. Aadnøy, University of Stavanger

Bernt.Aadnoy@uis.no

Inflow Control Tool Types

- There are two types of Inflow Control Tools
 - Flow reduction tools
 - Flow stop tools
- These can be installed separately or have a combined function. Examples follows
- Current understanding is that full flow stop is not optimal, a small flow is preferable

Outline of Presentation

- 1. Inflow control valves
 - 1.1 The ICD
 - 1.2 Autonomous Disc type valve
 - 1.3 Autonomous Constant flow valve
- 2. Autonomous water management technology
 - 2.1 Autonomous water stop
 - 2.2 Downhole reinjection
- Summary

1. Inflow Control Valves

- 1.1 The ICD (Inflow Control Device)
- Orifice, turbulent for low viscosity fluids
 - Sensitive to variations in density

 $\Delta P \propto \rho Q^2$

- Orifice, laminar flow for high-vis fluids
 - Sensitive to variations in viscosity

$$\Delta P \propto \mu Q$$

Very successful in reducing coning in horizontal wells

1.2 The Disc Valve

- The disc type valve
 - Similar to airplane wing

 $\Delta P \propto (\rho, \mu)Q^4$

- Compared to ICD
 - Sharper response to flow
- Some advantages
 - More aggressive
 - Gravity independent tool
 - Simple
 - Efficient gas flow reducer
- Some concerns
 - Plugging, scaling
 - Good for water?

1.3 Autonomous Constant Flow Valve

Autonomous Flow Device -AFD

$$\begin{split} &P_{reservoir} - P_{tubing} = \frac{KX}{A} + K_{v} \rho Q^{2} \\ &Q = \sqrt{\frac{1}{K_{v}\rho} \left\{ \left(P_{reservoir} - P_{tubing} \right) - \frac{KX}{A} \right\}} \end{split}$$

Flow constant regardless of pressures

- WOC and GOC control
- Higher production rates
- Perfect for injectors

1.3 Autonomous Constant Flow Valve

Comparison, faster production

Input data

- Horizontal well
- Reservoir length 3,600 m
- 300 inflow control valves, one every 12.2 m
- Initial flow rate 9900 bpd
- Recoverable volume 108 barrels

Drainage analysis	ICD	AFD
Initial production rate	9900 bpd	9900 bpd
Final production rate	2120 bpd	9091 bpd
Time to drain reservoir	9 years	5.2 years

2. Autonomous water management

- Water production
 - 3 bbls water per bbl oil produced worldwide
 - Cost :4 5 \$/bbl to handle
 - Reduces oil field recovery

- Reversible, open if oil resume
- Downhole water reinjection
- Increase recovery

^{*}Patented technology

2. Autonomous water management

- 2.1 Autonomous water stop
 - Based on gravity
 - Float lifts with water
 - Symmetric, i.e. balls in recess
 - Run blindly into well

- Float at bottom, orifice open
- Water in tool
 - Float rise, ball closes orifice
 - Produce water from zero to wanted flow

2.2 Autonomous water stop, cont.

- Problem with ball type tools:
- When closed, well must be shut in to reopen
- Therefore, this tool is designed to be fully reversible; principle sliding rod

2.2 Autonomous water management

- Downhole water disposal
 - Two-way valve

- Oil, upper valve open, bottom valve closed
- Water, upper valve closed, bottom valve open. Water is rerouted to another reservoir

2.2 Autonomous water management

- Example application
 - 3 separate reservoirs
 - Water arrives unexpectedly
 - Reopening if oil returns

- Shut in all sections that produce water
- Produce untill all oil is gone
- Maximizes recovery

2.2 Autonomous water management

- Properties of autonomous water stop*
 - No tool orientation, runs blindly into the well
 - Works for all inclinations, vertical to horizontal
 - A simple mechanical device based on buoyancy
 - Can reinject produced water downhole
 - Is fully reversible
 - Optimal for commingling, maximizes recovery

Autonomous Water Control System (AWCS)

*Patented technology

Summary

- Autonomous inflow technologies presented
 - Inflow control valves
 - ICD
 - Disc valves for gas stop
 - Constant flow valve for faster production
 - Autonomous water management technology
 - Simple tool, runs blindly into well
 - Fully reversible, opens if oil reenters tool
 - Two-way valve allows for downhole water disposal
 - Maximizes recovery