Transient Pressure and Temperature Interpretation in

Intelligent Wells of the Golden Eagle Field

Khafiz Muradov Institute of Petroleum Engineering, Heriot-Watt University, Edinburgh, UK Ken Macrae Nexen Petroleum U.K. Ltd. SPE Aberdeen 3rd Inwell Flow Surveillance and Control Seminar 3rd October 2017

A New Energy

- Field and Well Description
- Temperature Transient Analysis (TTA) Basics
- Useful Events and Input Data
- TTA Selected Results
- Conclusions

The Golden Eagle Field

Golden Eagle Area Development Map

2

- The Golden Eagle Area is located 100 km NE of Aberdeen in the UKCS
- Production started in October 2014 with water injection some months later.
- The field produces a light, under-saturated black oil from the:
 - Lower Cretaceous Punt sandstone
 - Upper Jurassic Burns sandstone
- The two formations were, and possibly still are, in communication in at least one area of the field.

The Golden Eagle Field

Cross Section Through Central Golden Eagle Field

- I-well technology installed in most of the 14 production and 5 injection wells
- ICVs manage the production from up to 3 zones/per well
 - Produced separately or comingled in any combination.

UT03739(a

Completion: In-well Monitoring & Flow Control

Transient Pressure and Temperature Interpretation in Intelligent Wells of the Golden Eagle Field (SPE-185817) • Khafiz Muradov and Ken Macrae

Problem Statement

- 1. In-well flowmeters measure total well rate and
 - Pressure & Temperature data measured by permanent, high-precision gauges but
 - Workflow required to turn measured data into information on zonal flow rate allocation, reservoir monitoring, history matching, etc.
- 2. ICVs are regularly cycled.
 - Provides zonal flow-rate build-up and drawdown (transient) data as part of routine operations for:
 - i. Pressure Transient Analysis (PTA)
 - Well-developed with high quality analysis software available
 - ii. Temperature Transient Analysis (TTA)
 - Novel
 - Golden Eagle Field provides a unique set of data to extend and verify industry knowledge in this area

- Field and Well Description
- Temperature Transient Analysis (TTA) Basics
- Useful Events and Input Data
- TTA Selected Results
- Conclusions

Transient Temperature Analysis A Game Changer for Multi-zone Wells

Example from: MURADOV, K. & DAVIES, D. 2012b. Temperature transient analysis in horizontal wells: Application workflow, problems and advantages. Journal of Petroleum Science and Engineering, 92–93, 11-23

Discrete and Distributed TTA analysis: An attractive source of information:

- 1. Differentiates zones
- 2. Layer-by-layer testing no longer required
- ALSO Tolerant to gauge drift & accuracy

BUT analysis workflow not widely adopted yet

Transient Pressure and Temperature Interpretation in Intelligent Wells of the Golden Eagle Field (SPE-185817) • Khafiz Muradov and Ken Macrae

Potential Benefits of Transient Pressure & Temperature Data

- 1. P data is better at describing the reservoir at a distance
- 2. T recognises the near-wellbore effects much better than P T signal propagates much slower than P signal

elapsed time, s

Example from MURADOV, K. & DAVIES, D. 2012b. Temperature transient analysis in horizontal wells: Application workflow, problems and advantages. Journal of Petroleum Science and Engineering, 92–93, 11-23

Pressure Model (Diffusivity equation)*

$$\frac{\partial}{\partial t}(\phi\rho) + \nabla \cdot \left(-\rho \frac{\overline{\overline{K}}}{\mu} \nabla P\right) = 0$$

Tra

Divergence of mass flux

Thermal Model*

compared for a numerical model of a vertical, oil production well

TTA Research is relatively new (since 2008)

Outline

- Field and Well Description
- Temperature Transient Analysis (TTA) Basics
- Useful Events and Input Data
- TTA Selected Results
- Conclusions

Select Well A Data for TTA interpretation after 5 months:

Routine ICV cycling/testing

- 1. Zone 1 and 2 TTA events due to rate change in another zone selected
- 2. ICV3 cycling: simultaneous rate change in all zones used for multi-zone TTA

Transient Pressure and Temperature Interpretation in Intelligent Wells of the Golden Eagle Field (SPE-185817) • Khafiz Muradov and Ken Macrae

Fluid and Formation Properties

- 1. Conventional PVT properties available.
- 2. In-situ Thermal fluid properties are unknown, however there are multiple ways to estimate them cheaply and accurately. From instance in this work:

Specific heat capacity, Cp

estimated using black oil correlations

Adiabatic (η) and Joule-Thomson (ϵ) coefficients:

estimated directly from the pressure and temperature measurements

* See paper SPE-185817 for more detail

Radial flow models applied to well A. The corresponding TTA solutions were used as follows:

- 1. The temperature slopes were used to estimate the kh values for each zone
- The damage radius and permeability kdam were also reliably estimated using temperature, because the rate at which the radius of investigation for temperature increases in well A is ~200 times slower than for pressure.
- 3. These parameters were then used in a zonal Productivity Index model to calculate zonal Pis

Further, combined with the basic wellbore pressure measurements (no PTA) the above estimates of zonal PIs were used to

- 4. Estimate zonal pressures (zonal shut-in is not required)
- 5. Reliably allocate zonal flow rates or flow rate changes

* See paper SPE-185817 for more detail

"Traditional" Pressure based Well Surveillance that was Used in Well A to confirm TTA results

Combining TTA with "Traditional PBU/PDD" methods "Adds Value" by:

- 1. Confirmation of TTA results.
- 2. Well monitoring, reservoir characterization & flow rate allocation, e.g.:
 - a. Zonal PBUs
 - b. Nodal analysis, multi-layer/zone, wellbore model used routinely.

Measure stabilised pressures and total Q_{well} for various combinations of ICV positions and estimate:

Zonal PI or P_{res} for each zone & solve $Q_{well} = \sum_{i=1}^{3} PI_i(P_{res,i} - P_{ann,i})$

c. ΔP_{ICV}^* used for virtual flow metering: $\Delta P_{ICV} = \frac{\gamma \cdot q^2}{c_V^2}$

where C_V for each ICV position provided by the ICV manufacturer

* ΔP_{ICV} must be sufficiently large.

Outline

- Field and Well Description
- Temperature Transient Analysis (TTA) Basics
- Useful Events and Input Data
- TTA Selected Results
- Conclusions

Top Zone (Zone 1) TTA: an event (instantaneous increase in q1) generated by Zone 2 closure

Selected Findings and Observations:

- Instantaneous temperature jump in Zone 2 after shows that the zone is cleaned up. It is also used to estimate fluid thermal props
- The Zone 1 slopes ratio is used to estimate fluid thermal props
- Further, the Zone 1 T slope analysis gives kh estimate of 75 D*ft. (matches the (earlier) PBU result of 71 D*ft!)
- The damage zone (radius, permeability) is also described using TTA (unique result)

Zone 2 TDD and Zone 1 TBU

Well A Results:

Zone 2 TDD

Zone 3 TDD

Zonal PBU results:

	Zone 1 (Upper Punt)	Zone 2 (Lower Punt)	Zone 3 (Burns)
kh, mD.ft	71,000	19,000 – 29,000	3,000 – 15,000
Total skin	+0.9	approx1	+ 2 to -3
PI,	34.6	15.4	4.3
bbls/day/psi			

Zonal TTA results:

	Zone 1 (Upper	Zone 2 (Lower	Zone 3
	Punt)	Punt)	(Burns)
kh damage zone,	7,000	2,000	1,000
mD.ft			
kh original, mD.ft	75,000	22,000	n/a
Damage radius	1ft	1ft	> 3 ft
Damage skin	3	6	n/a
Zone clean during	Yes	Yes	No
test?			

Major results:

- a. KH values from TTA & PBU data analyses agree
- b. TTA uniquely provides depth and permeability of formation damage zone
- c. Zonal shut-ins also used for well clean-up quality monitoring

Formed the basis of comprehensive guidelines for implementing TTA (+data sampling, metrology & test design) by project sponsors

Simultaneous, Multi-zone TTA

- 1. Simultaneous analysis *(flow profiling)* of multiple zones from a single transient is a unique to TTA.
 - Downhole flow control (incl. zonal shut-ins) is not required
- 2. Thermal contribution of each zone =

the total, thermal contribution -

the combined contribution of all upstream zones.

- 3. Solutions for temperature slopes allows:
 - Ignoring thermal mixing and wellbore heat flow effects
 - Extracting sand face slopes for each zone from one event

Verification of simultaneous analysis of multiple zones - by comparing zonal derivatives

Zone 3 TDD and PDD

TTA predicted ratio of zonal rates: $\Delta q_1: \Delta q_2: \Delta q_3 = 19:7:20$

PBU predicted ratio of zonal rates: $\Delta q_1: \Delta q_2: \Delta q_3 = 20:8:20$

This unique ability of TTA to profile reservoir properties, or rates, from a single

transient without the need for zonal closure also applies to conventional wells

Outline

- Field and Well Description
- Temperature Transient Analysis (TTA) Basics
- Useful Events and Input Data
- TTA Selected Results
- Conclusions

Conclusions

- 1. Practical field application of TTA solutions to wells equipped with high-precision in-well monitoring and zonal control confirmed
- 2. Input fluid property data derived directly from TTA data set
- 3. TTA reliably estimated zonal flow rates, formation damage zone properties and well clean-up parameters.
- 4. TTA solution accuracy of \pm 5-20% for this field's data set
 - Results uniquely verified by other data sources.
- 5. TTA also suited to interval-by-interval Temperature analysis for flow and Kh profiling of conventional wells.
- 6. TTA has "stand-alone" workflow or combined with PTA
 - TTA can reduce the number of well or zonal flow tests by $\geq 50\%$
 - Compensates for failed ICVs / sensors.

Analysis of In-Well Temperature Data: The Future

Multiple methods for interpretation and well test design steady-state (DTS) and transient (FBG, PDG, ATS) pressure & temperature (both) for smart and conventional wells producing either liquids or gas.

Latest "Value from Advanced Wells" JIP starting shortly, will develop:

- 1. In-well monitoring and data interpretation Theme
- Integrated, Pressure and Temperature Transient data analysis for gas-liquid production wells
- DTS interpretation methods for oil and gas wells
- Data mining of in-well measurements and
- 2. Modelling and Optimisation Theme
- Maximise "Added Value" from downhole flow control completions

Khafiz Muradov would like to thank the 2014-2016 sponsors of the "Value from Advanced Wells" Joint Industry Project, who promote the development of monitoring, control, design, and modelling methodologies for smart wells: Nexen; Woodside; Statoil; Petrobras; Husky Energy

We also thank Nexen Petroleum U.K. Limited and the Golden Eagle Development Co-venturers for permission to present the field data:

- Maersk Oil North Sea U.K. Limited
- Suncor Energy UK Limited
- DYAS EOG Limited
- Oranje-Nassau Energy Petroleum Limited