

SPE Inwell Flow Surveillance & Control Seminar

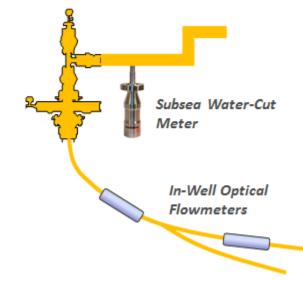
Delivering Surveillance Solutions and Driving Well Performance through Flow Control

SUBSEA MULTIPHASE FLOW METER

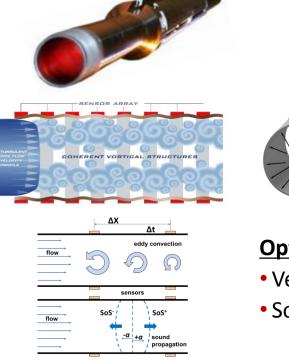
OPTICAL INWELL FLOWMETER & WATER CUT

Mario Toro Flow Measurements Product Line Manager – Europe/ Caspian and Africa

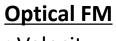
3rd October 2017

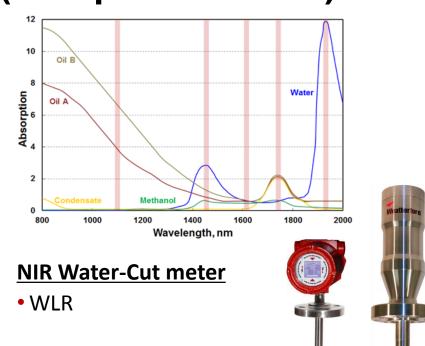


OUTLINE


- Historical Background / Motivation
- Measurement Principles
- Flow Loop Tests
- Summary of Results
- Conclusions and Benefits

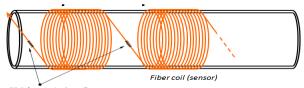

Historical Background / Motivation


- 1998 First NIR water-cut meter introduced
- 2000 First optical flowmeter (OFM) in deep-water, GoM
- 2000-2016 World-wide installations of OFMs and watercut meters
- 2010 Subsea water-cut meter development started
- 2012 Upon success of OFM and WC meter, hybrid approach introduced
- 2014 Hybrid system was tested in multiphase loop
- 2015 Analysis completed, performance verified


Subsea MPFM – Operating Principles (Component Level)



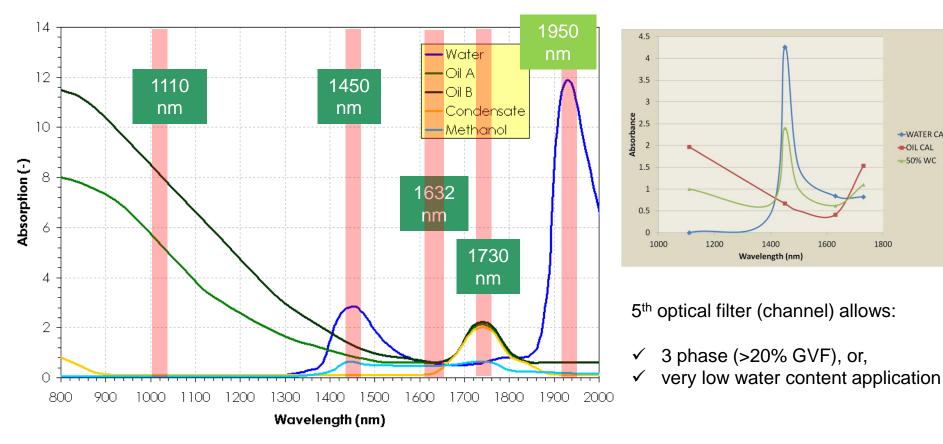
- Velocity
- Sound Speed



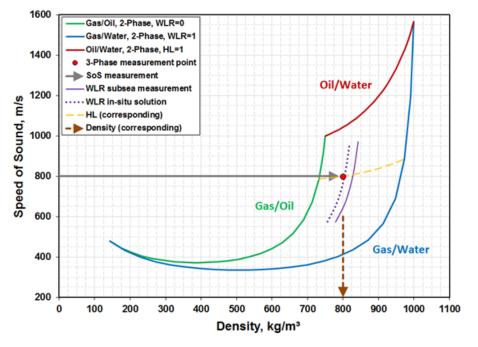
SPE-182378-MS • Subsea Multiphase Flowmeter: Performance Tests in Multiphase Flow Loop • Ö. Haldun Ünalmis

Downhole Optical Flowmeter – Technology

- Turbulent pipe flow contains eddies (vortical structures)
- Eddies exert dynamic pressure onto pipe causing strain
- Sensors outside the pipe track eddie y

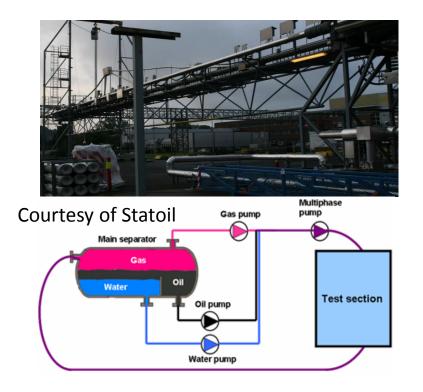

FBG (strain isolated)

Copyright 2017 Weatherford Proprietary


NIR Water-Cut How Does it Work?

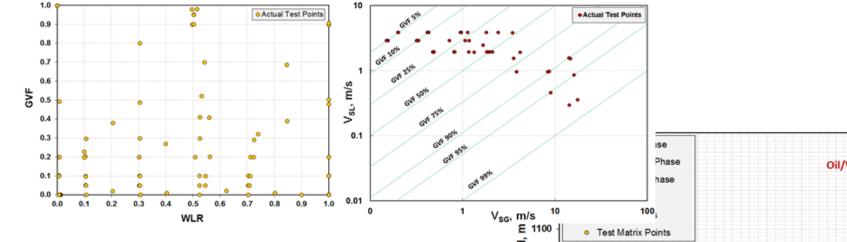
-WATER CAL --OIL CAL -50% WC

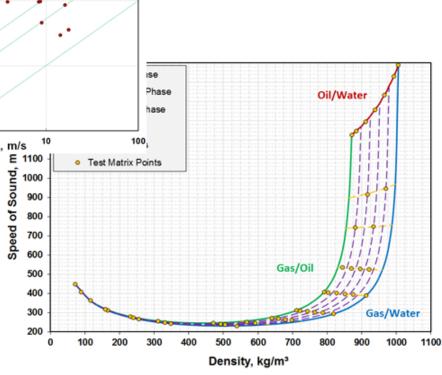
1800

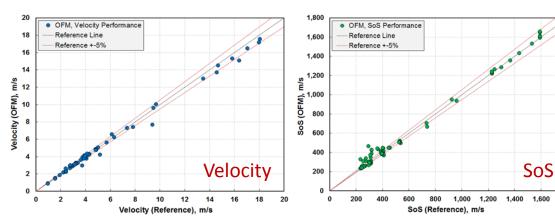


Subsea MPFM – Operating Principles (System Level)

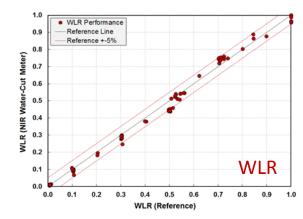
- Optical flowmeter
 - Velocity
 - Speed of Sound (SoS)
- NIR water-cut meter
 - Water cut (WLR)
- SoS/WLR \rightarrow Holdup (HL)
 - \circ WLR, HL \rightarrow phase fractions
- Velocity \rightarrow total flow rate, Q
- Phase flow rates \rightarrow Q_o, Q_g, Q_w


Flow Loop Tests – Facility

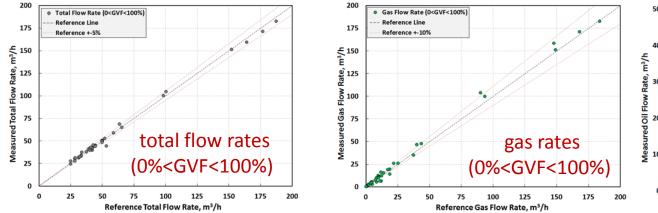

Porsgrunn multiphase flow loop (September 8 – 18, 2014)


Flow Loop Tests – Test Matrix

- Test duration: 10 days, 84 test points
- Test conditions: P=100 bar, T=55 °C
- Oil phase: 61% heavy oil + 39% diesel
- Average acquisition time: 12 minutes
- 1-P (single-phase), 2-P, and 3-P (multiphase)


Summary of Results – Component Level

Optical Flowmeter (downhole)




NIR Water-Cut Meter (subsea)

1.800

Summary of Results – System Level

- Total flow rates are within $\pm 5\%$ (0<GVF<100%)
- Gas flow rates are within ±10% (0<GVF<100%)
- Oil and water flow rates are within $\pm 10\%$ (0<GVF<75%)
- Test conditions can be improved
 - Oil phase issues (2-phase, density variation due to foaming)
 - More acquisition time between extreme points (human err)

Optical FM Performance & Capabilities

	Optical FM Performance		Optical FM Options
Accuracy	Single phase liquid: +/- 1% Single phase gas: +/- 1% Multiphase: +/- 5%	Single-Phase	Zonal Isolation in water, gas, or WAG injectors. An integrated P/T gauge is recommended but not compulsory. P/T gauge is compulsory for gas injectors.
Repeatability	Low Standard Deviation Excellent	Two-Phase	L/L or G/L with integrated optical P/T gauge
Turndown ratio	Approximately 30:1	Three-Phase	G/L/L; Two Phase flowmeter with a secondary P/T gauge above the flowmeter to resolve the three phases measurements

Optical FM Track Record : Platform & Subsea Wells

= 100

Water Cut Meter Performance & Capabilities

GVF Level	Water-Cut Range and Accuracy	Additional Measurements
GVF < 20 % (Liquid / Liquid Service)	0 – 100 % ±1 %ª	Water Detection
20 % < GVF < 98 % (Multiphase Flow Service)	0 – 100 % ±2 %ª	 Hydrate Inhibitor – Water-Oil Concentration^b Slug Detection Water Detection
GVF > 98 % (Wet Gas Service)	0 – 100 % ±10 %ª	 MEG- Water-Oil Concentration^{bc} Slug Detection Water Fraction Tracking Water Detection^d

NIR-Water Cut Track Record :

Subsea= 20 + 10 on OrderTopside/Land=+3,000

^a Error given in absolute terms

^b Methanol or any common hydrate inhibitor

^c Methanol-water concentration measurement uncertainty $\pm 10\%$

^d Water detection limit is 0.25 bbl/MMscfd.

Subsea Multiphase Flowmeter – Benefits

- Wide range of applications (subsea, onshore, offshore)
- Nonnuclear, optical solution
- Zonal allocation in multizone wells
- High turndown ratio
- Bidirectional measurement
- Orientation free (any installation angle in the well)
- Better mixing of phases for robust flow measurement
- Less intrusive and solid-tolerant measurement
- Modularity
- Form factor and weight
- Production optimization
- Economics

SPE Inwell Flow Surveillance & Control Seminar

Delivering Surveillance Solutions and Driving Well Performance through Flow Control

Thank You / Questions

SPE-182378-MS Subsea Multiphase Flowmeter: Performance Tests in Multiphase Flow Loop

Authors:

- Ö. Haldun Ünalmis
- `Vishal V. Raul
- Vijay Ramakrishnan

Acknowledgments

✓ JIP participants: Statoil, ExxonMobil Upstream Research Company, Weatherford

✓ Porsgrunn Multiphase Flow Loop operators and engineers

