Downhole ESP Gauge with Motor Diagnostics

New Downhole electrical measurements optimising efficiency & output

EuALF 2018 European Artificial Lift Forum
13-14 June 2018, AECC, Aberdeen, UK
Gauge history

DOWNHOLE GAUGE DEVELOPMENT

First downhole pressure and temperature gauge

1994
First multi-parameter ESP gauge

2007
Distributed pressure, temperature, vibration measurements across the ESP

2012
First ground fault immune ESP gauge

2016
First downhole ESP gauge with MD system

Copyright 2018 Baker Hughes, a GE company, LLC (“BHGE”). All rights reserved.
ESP gauges are typically “Comms on Power”

- Gauge connected to the motor WYE point
- Gauge power and data superimposed onto the 3phase ESP electrical circuit
- Extracted at surface via a electrical choke
- No separate TEC lines to surface
The latest ESP gauge parameters

MEASURED PARAMETERS

Primary Parameters: for essential pump and well surveillance and protection

Predictive Parameters: for preventative maintenance and effective workover management

Intelligent Parameters: for advanced well and pump analysis, diagnosis and optimisation

* calculated parameter
ESP gauge with motor diagnostics

PACKAGING
Looks like a regular ESP comms on power gauge

• Connects to the motor windings in the same way as a conventional ESP gauge
• New electrical measurements added to the standard pressure, temperature and vibration parameters
• All data transferred via ESP cable to surface
• Conventional surface logger displays/logs parameters
Zenith E-Series ESP gauge with motor diagnostics

MEASURED PARAMETERS

Along with Pi, Pd, Ti, Tm, Vx and Vz, the gauge provides:

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shaft RPM</td>
<td>Lift Performance / power / production</td>
</tr>
<tr>
<td>Slip rate</td>
<td>Lift Performance / power / production</td>
</tr>
<tr>
<td>True power factor</td>
<td>Power</td>
</tr>
<tr>
<td>Torque</td>
<td>Lift Performance</td>
</tr>
<tr>
<td>Motor HP</td>
<td>Power</td>
</tr>
<tr>
<td>Real-time cable insulation</td>
<td>Lift Diagnostics</td>
</tr>
<tr>
<td>Imbalance indicator</td>
<td>Lift Diagnostics</td>
</tr>
<tr>
<td>Motor efficiency</td>
<td>Lift Performance / power</td>
</tr>
<tr>
<td>Shaft rotation direction</td>
<td>Lift Diagnostics / production</td>
</tr>
</tbody>
</table>
FIRST TO MARKET

OPTIMISING POWER USAGE
Power optimisation

<table>
<thead>
<tr>
<th>Traditional Parameters</th>
<th>New Electrical Data</th>
<th>Output Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressures</td>
<td>Downhole wye-point</td>
<td>Slip rate</td>
</tr>
<tr>
<td>Temperatures</td>
<td>Waveform analysis</td>
<td>Power factor</td>
</tr>
<tr>
<td>Vibration</td>
<td>Surface wye-point</td>
<td>True motor horse power</td>
</tr>
<tr>
<td></td>
<td>Waveform analysis</td>
<td>Efficiency</td>
</tr>
<tr>
<td></td>
<td>Volts, Amps, Hz</td>
<td>Torque</td>
</tr>
</tbody>
</table>

Replaces calculated parameters with real time measured data
➔ allowing more accurate and confident ESP optimisation

Fully compatible with intelligent well and field optimisation software
➔ optimise power vs barrels produced considering both production and ESP power usage
Customer power quality challenges

SOURCES OF POWER QUALITY ISSUES

- Voltage Dips: 28%
- Short Interruptions: 19%
- Long Interruptions: 11%
- Transients & Surges: 13%
- Harmonics: 5%
- Other PQ Problems: 11%

Effect of power quality on ESP operations:

- Operating Expense
- Downtime
- Equipment Run Life

Source: ResearchGate
The impact of insight into true power factor

BENEFITS OF KNOWING YOUR TRUE SURFACE AND DOWNHOLE POWER FACTOR

- Reduction of electricity bills
- Extra KVA available from existing supply
- Reduction of losses and voltage drops
- Extended equipment life
- Environmental
 - Reduced consumption / improved efficiency
 - Less emissions / fossil fuel depletion
Motor load – why is measured torque and horsepower useful?

THE RELATION BETWEEN FULL LOAD AND TORQUE / HP

- Ideally you can vary motor load from 0 – 100% by changing the frequency from 0 – 60Hz, this is in an ideal motor and ideal design.
- To run a motor efficiently it is beneficial to know torque, HP and load.
- A VSD does not have a direct measurement of downhole torque, HP or load at the motor (a VSD calculates these parameters based on correct input of motor vs surface electrical data)
- The motor diagnostics gauge is agnostic of input data and highlights when 100% load is achieved in real time
- Load and torque can be used to protect the motor and run at optimum power consumption
CASE STUDY: Motor load optimization

- The ESP was designed to reach 100% load and 100% HP at 60Hz.
- However the gauge identified that the motor reached 100% load at around 48Hz.
- It was (later) advised that at this point the motor was re-rated to 150% by adjusting tappings and “adjusting” VSD nameplate value settings
- Full load was detected again by the gauge at ~57Hz.
- The motor diagnostics gauge advises exactly when 100% HP is achieved so user can correct tappings to operate at best motor efficiency vs load.

Motor Monitoring: Torque & HP

- Full load/ Saturation detected
- Nameplate reference detected

Downhole Amps (ESP Drive)

- Current drawn by the motor increasing
- But power is wasted

Copyright 2018 Baker Hughes, a GE company, LLC (“BHGE”). All rights reserved.
At ~120% of motor rated load (~120% of original nameplate) extra power supplied from increasing frequency is wasted

SAME PRODUCTION @ LESS POWER COST
CASE STUDY: Motor load

MEASURED MOTOR LOAD (GAUGE) VS. CALCULATED MOTOR AMPS (VSD)

Load measured by the MD DHG

Current draw

Max load

Power wasted
CASE STUDY: Motor load

MOTOR EFFICIENCY VS VSD CALCULATED DOWNHOLE AMPS

Max load measured by the MD DHG

0
10
20
30
40
50
60
70
80
90%

45
47
49
51
53
55
57
59
61
63
Hz

76%
78%
80%
82%
84%
86%
88%
90%

Downhole Amps
eff

Copyright 2018 Baker Hughes, a GE company, LLC (“BHGE”). All rights reserved.
CASE STUDY: Available power saving

• Motor data suggests that by changing Volt/Hz ratio from current settings to 60 Hz (e.g. volts which are supplied at 63Hz now to be supplied at 58 – 60Hz) should deliver

 Potential saving of 9% - 13% on power cost with the same production

• In this case the VSD tripped many times after exceeding the suggested maximum operating point of 57Hz.

• Due to long log rate of VSD data — poor user input — trips were not always detected in VSD amperage log leading to extended downtime
CASE STUDY: Motor performance diagnostics

~150% SUDDEN INCREASE IN LOAD DETECTED

Exceeding maximum motor torque, in this case 350%, may shear the shaft or cause permanent damage – if not controlled or rectified.

Within 1 minute, frequency drops from 60Hz to 35Hz & returns to 60

Caused huge steps of motor load and torque
CASE STUDY: Motor failure prediction

Increased stress indicated by the DHG, while ΔP and DH amps did not change. The ESP tripped for electrical motor failure.

![Graph showing stress over time with an arrow indicating where Coms lost/ESP tripped at over 13 hours]
Optimising production

- Motor diagnostics gauge immediately shows motor direction without having to wait for fluid to surface
- Detects stuck pumps
- Forward/reverse configurable for pump manufacturer
Case study data: Backspin

MEASURING TRUE BACKSPIN DOWNHOLE

- Zenith gauge is capable of detecting backspin, ruling out risk involved in measuring voltage manually & perhaps eliminating need for a backspin relay.

- Backspin info can be vital during RIH ensuring kill fluid rate is within safe range to the ESP stages.

- Pi, Pd readings will not necessarily indicate backspin in all cases.

- Graph is an example of backspin logs taken at intervals during RIH.
Conclusion
Zenith E-Series ESP gauge with motor diagnostics

BENEFITS

- Replaces inaccurate surface calculations
- Enables accurate electrical performance monitoring
- Run equipment at actual optimum points against load

System adjustments are made based on measured not estimated values ensuring truly efficient, safeguarded ESP operations.
CONCLUSION

The Zenith E-Series Gauge with Motor Diagnostics provides **real-time power analysis** enabling operator to:

- Monitor motor performance for informed decision-making
- Operate ESP at the best efficiency and lowest cost
- Place less strain on equipment to enhance runlife
- Quickly know pump is spinning the correct way at start up
- Optimize production vs power consumption