Classifying salt as a barrier for well abandonment – A case study from the Southern North Sea

Presenter: David Dangfa (Spirit Energy) Senior Petrophysicist

Co – Authors:

Hozefa Godhrawala, Rashid Sharafutdinov (Spirit Energy) Kamaljeet Singh, David Small (Schlumberger)

Agenda

- A-Fields introduction
- Geology
- Abandonment overview and challenges
- Case study
- Conclusion
- Acknowledgements

A-Fields - Overview

Fields:	Ann Annabel Audrey Alison
Location:	UKCS Southern Gas Basin
Partnership:	100% Spirit Energy
Hydrocarbons:	Gas , Condensate
Reservoir Formation:	Rotliegend Leman Sandstone
Source Formation:	Westphalian Coal Measure
Start of production:	1988
Production wells:	21
Total Production:	> 955 BCF
Total GIIP:	1.2 TCF
CoP:	2016

A-Fields - Overview

Fields:	Ann Annabel Audrey Alison			
Location:	UKCS Southern Gas Basin			
Partnership:	100% Spirit Energy			
Hydrocarbons:	Gas, Condensate			
Reservoir Formation:	Rotliegend Leman Sandstone			
Source Formation:	Westphalian Coal Measure			
Start of production:	1988			
Production wells:	21			
Total Production:	> 955 BCF			
Total GIIP:	1.2 TCF			
CoP:	2016			

A-Fields - Decommissioning overview

Methanol pipeline/umbilical

Spirit Energy has 52 wells to be abandoned by 2023

A-Fields – Seismic section and stratigraphy

Flow potential zones

Seismic section of A-fields

SPIRIT ENERGY

Age	Group	Formation / Member		
	Seabed			
TERTIARY	North Sea	Quaternary		
	Chalk			
CRETACEOUS	Cromer Knoll	T A (A)		
1100000	1.1	Top Speeton Clay		
JURASSIC	Lias	14 First and a m		
	Usishananah	Winterton Triter America		
	Haisporougn	Triton Anyarite		
TRIASSIC		Dudgeon Saliferous		
		Muscheikaik		
	Bester	Rot Hallte		
	Bacton	Bunter Sandstone		
		Bunter Shale		
		Brockelshiefer		
	Zechstein	Aller Halite		
	Z4	Pegmatitanhydrit		
		Roter Salzton		
	73	Leine Potash/		
		Leine Halite		
		Plattendolomit		
	Z2	Stassfurt Halite		
PERMIAN		Z2 Polyhalite		
		Basal Anhydrit		
		Hauptdolomit		
	Z1	Werraanhydrit		
		Zechsteinkalk		
		Kupferschiefer		
[Rotliegend	Leman Sandstone Units A, B, C		
CARBONIFEROUS				

Multiple flow zones and drilling hazards

A-Fields – Seismic section and stratigraphy

Seismic section of A-fields

SPIRIT ENERGY

Soluble and mobile salts

Age	Group	Formation / Member			
	Seabed				
TERTIARY	North Sea	Quaternary			
CRETACEOUS	Chalk Cromer Knoll				
CRETACEOUU		Top Speeton Clav			
JURASSIC	Lias				
		Winterton			
	Haisborough	Triton Anydrite			
		Dudgeon Saliferous			
TRIASSIC		Muschelkalk			
		Rot Halite			
	Bacton	Bunter Sandstone			
		Bunter Shale			
		Brockelshiefer			
	Zechstein	Aller Halite			
	Z4	Pegmatitanhydrit			
		Roter Salzton			
	72	Leine Potash/			
	25	Leine Halite			
		Plattendolomit			
	Z2	Stassfurt Halite			
PERMIAN		Z2 Polyhalite			
		Basal Anhydrit			
		Hauptdolomit			
	Z1	Werraanhydrit			
		Zechsteinkalk			
		Kupferschiefer			
	Rotliegend	Leman Sandstone Units A, B, C			
CARBONIFEROUS					

Multiple flow zones and drilling hazards

A-Fields – Seismic section and stratigraphy

Age	Group	Formation / Member			
	Seabed				
TERTIARY	North Sea	Quaternary			
	Chalk				
CRETACEOUS	Cromer Knoll				
		Top Speeton Clay			
JURASSIC	Lias				
		Winterton			
	Haisborough	Triton Anydrite			
		Dudgeon Saliferous			
TRIASSIC		Muschelkalk			
		Rot Halite			
	Bacton	Bunter Sandstone			
		Bunter Shale			
		Brockelshiefer			
	Zechstein	Aller Halite			
	Z4	Pegmatitanhydrit			
		Roter Salzton			
	Z3	Leine Potash/ Leine Halite			
		Plattendolomit			
	Z2	Stassfurt Halite			
		Z2 Polyhalite			
PERMIAN		Basal Anhydrit			
		Hauptdolomit			
	Z1	Werraanhydrit			
		Zechsteinkalk			
		Kupferschiefer			
	Rotliegend	Leman Sandstone Units A, B, C			
CARBONIFEROUS					

Multiple flow zones and drilling hazards

Zechstein - Squeezing salts

- Predominantly evaporite (anhydrite and salt) and carbonate formations
- Complex sequence of soluble salts with high potassium and magnesium content.
- Drilling challenges associated with highly soluble and mobile salts

Mobile salts - drilling challenge but abandonment opportunity

Case Study - Audrey 49/11a-7

- Subsea gas producer
- Drilled late 1987 and completed in August 1988
- Production abruptly ceased in March 1997 due to well related issues
- Well abandoned in April 2017
- Subsurface objectives to establish:-
 - Zones with flow potential
 - Cement / salt bond behind 9 5/8" casing

Case Study - Work plan

- Review old CBL log
- Cut and retrieve tubing
- Acquire conventional CBL and Pulse Echo / Flexural Attenuation logs for cement evaluation
- If good casing bond observed in zone(s) of interest, conduct AIT test and set balance cement plug along annular bond
- If poor/no casing bond observed or failed AIT, perform remedial perf and wash cement job at 13 3/8" shoe

- Cement log at time of well completion showing free pipe (not cemented)
- CBL > 50mV (free pipe)
- CBL < 10mV (good cement)

The same interval logged in 2017 (30yrs later) shows the presence of solids and some degree of good casing bond suggesting formation has crept in against 9 5/8" casing

	GR	Casing	CBL	BI	VDL	-10000.0 2.60 4.00	Cement Map	6.50 9.50 12.50
		ID		Good bond	-32767.00	R <mark>ccou</mark> sticImped	danceMap UFAK	SLG_USLG
Reference (ft) 1:3000	GR_EDTC	IRBK	DCBL	Bond Index	VDL - R 1	LMCRO_DEBON		
4900	U GAPI ISU	0.43 11 0.43						
5000	2	2.47 A						
5100	٤		F					
5200								- 4
5300	•		-	2				
5400	ξ I		Z					
5500			3					
5600	\leq	191	-					
5700	ş 🗌	A CARLER	2		i hungal			
5800	<u>}</u>							
5900	٤		£	2	UDANAS			
6000 -	2		Ŧ	2				
6100			5		1000 SP			
6200	{		₹ Ţ					
6300	}		£					
6400			2					
6500			ž					
6600	٤		Ł					
6700	2		Ê					
6800	1		£					
6900			Ę.				4.22. 8	
7000	\$		2					
7100	2		Z,					
7200	2	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	~~					3. (5.)
7400	3		>					
7500	2		2					
7600	5	15.25	3		D D D D D D D D D D D D D D D D D D D			
7700		15 2.57	2					
7800			-					
7900	5		2					
8000	§		ŧ					
8100			$\overline{\mathbf{T}}$					
8200	4		<u> </u>			X (A)		

Sandstone

(Reservoir)

Carb

7" Liner Shoe Well TD

SCHEMATIC

Seabed

RTE

Stratigraphy

Tertiary / Undifferentiated

Need to identify > 200ft of cumulative good bond to satisfy Oil and Gas UK abandonment guidelines

> 200ft of good annular salt bond was achieved over 340ft long interval tested

Creeping salts can act as annular barrier for abandonment

Case Study - Summary

- Set 940ft balanced cement plug adjacent to annular salt bond
- Well successfully abandoned with salt as annular sealing barrier
- Significant cost savings made by not performing remedial cement job

Conclusion

Creeping salts are not always your enemies. They could actually be your buddies

The authors would like to thank the management of Spirit Energy for permission to share this document/knowledge

The authors also thank colleagues in Spirit Energy and Schlumberger Wireline for their support

Thank you

