# DEVEX Presentation on Well Testing

Prof George Stewart RGS Consulting







### Heidron Field

North Sea



Fangst Group

Drilled Wells and Planned Wells

#### Welltest versus Dual Modified Timur Predicted Permeability Field A Appraisal Wells (md) 10000 Saturation Exponent = 1.5 permeability Modified Timur Limits 1000 Measured Well Test Average 100 Well D Well B Well E Well F 10 $\sqrt{k} = 100$ Well-C 100 10 1000 10000 Timur Predicted Permeability (md) Columbus Basin













## Comparison of Permeability-Thickness and Permeability Between Mini-DST and DST Results in Well A

|                              | Upscaled Mini-DST | DST  |
|------------------------------|-------------------|------|
| Thickness, m                 | 15.2              | 16.5 |
| Permeability Thickness, md.m | 6149              | 6948 |
| Average Permeability, md     | 405               | 421  |

Unfortunately the authors give no results regarding the skin factor



































### Shrinking Box Method

Potential closing boundary



Time, t

Simulated derivatives computed for different L<sub>f</sub> values







Conceptual Model of DW Thinly Bedded Reservoir (After Budi)



### Bouma Turbidite Sequence

|              | Grain<br>Size               |                | Bouma (1962)<br>Divisions           | Interpretation                                                 |
|--------------|-----------------------------|----------------|-------------------------------------|----------------------------------------------------------------|
|              |                             | $T_{ep}$       | Pelite                              | Pelagic<br>Sedimentation                                       |
|              | →——Mud                      | $T_{ef}$       | Massive or graded<br>Turbidite      | fine grained, low density turbidity current deposition         |
| <b>计算是多数</b> |                             |                | Upper Parallel Laminae              | ???                                                            |
|              | ←Sand<br>Silt —             | T <sub>c</sub> | Ripples, wavy or concoluted Laminae | Lower part of<br>Lower Flow Regime                             |
|              |                             | T <sub>b</sub> | Plane parallel<br>laminae           | Upper Flow Regime<br>Plane Bed                                 |
|              | Sand — (to granule at base) | $T_{a}$        | Massive<br>graded                   | (?) Upper Flow Regime<br>Rapid Deposition<br>and Quick Bed (?) |



