

EuALF 2018

Maximize artificial lift systems reliability due to continuous in-house failure analysis and optimization

Bernd Kometer Michaela Hoy Michael Nirtl Aberdeen, 13. June 2018

OMV Upstream

Agenda

- Introduction
 - OMV Austria
 - Artificial lift systems
- Failure analysis
- Optimization
 - Sucker rod pump
 - Electrical submersible pump
- Results
- Summary

Introduction OMV Austria

- Production ~28,000 boe/day
- 10% of the Austrian oil and gas demand
- ▶ 50 fields
- 600 employees
- Technology center of OMV group
- 120 WI per year

Introduction Artificial Lift Systems

Ref: ISBN 978-3-941721-86-9

Failure Analysis Information

Failure Analysis Documentation

Optimization SRP Equipment

Optimization SRP Equipment and Cause

Optimization SRP Root Cause Failure Analysis

OMV TECH Center & Lab & AC²T research

- Barrel: Honing scratches in chromium layer as starting point for corrosion
- Plunger: Quality and thickness of spray metal coating
- Improved OMV Specification for SRP and quality assurance by factory acceptance tests

Valve

- Valve deformation main driver
- No corrosion detected
- No erosion by dispersed sand
- No sand particles embedded

Optimization SRP Customization

SRP downhole pump					
Equipment	Seating a	ssembly	Barrel	Valve	
Failure cause	Abrasion rod guide	Abrasion seating assembly	Corrosion body hole	Blocked by sand	
Failure reason	Valve rod movement in deviated well		Corrosion and abrasion	Sand	
Solutions	Spiral rod guide to stabilze valve rod		Brass barrel	Full flow cage	
		3			

SRP downhole pump			
Equipment	Valve rod	Plunger	Lower travelling valve
Failure cause	Unscrewed	Stuck plunger	Hole in valve cage
Failure reason	Tagbottom	Sand	Gas
Solutions	Collet type valve rod bushing	FARR [™] plunger	Gas lock breaker heavy ball and seat

Optimization ESP ALS Subsystem

Optimization ESP Equipment and Condition Monitoring

Optimization ESP Gas Separator

Optimization ESP Equipment and Condition Monitoring

Optimization ESP Pump

Optimization ESP Customization

- Pump
 - Mixed flow
 - 1 tungsten carbide bearing per ft
 - Compression pumps
- Intake
 - Change from gas separator to intake
 - Tungsten carbide bearings
- Protectors
 - Tandem protector with up to 6 seals
- Motor
 - Single motor
- Cable
 - Lead cable with factory spliced MLE

Results SRP Downhole Pump - Failure Recurrence Index

Results SRP - Mean Time Between Failures

Results SRP - Life Cycle Cost

Total life cycle cost and break even point analysis

Summary

- In-house failure analysis serves as the fundament for continuous artificial lift system optimization
- Quality assurance by factory acceptance tests at the pump manufacturer and laboratory inspection of failed parts ensures high quality of equipment
- Root cause failure analysis is a vital method to mitigate severe and recurring problems
- Economics: Increase of runlife leads to a decreasing amount of well interventions thereby decreasing life cycle costs
- Shift from standardization to customization of equipment for specific well conditions

References

- SPE-190958-MS (August 2018)
- SPE-185770-MS
- ▶ ISBN 978-3-941721-86-9
- API RP 11S1
- API 11AX

Legal Disclaimer

This presentation is prepared in order to outline our expression of interest. Nothing in this presentation shall be construed to create any legally binding obligations on any of the parties. Neither party shall be obligated to execute any agreement or otherwise enter into, complete or affect any transaction in relation to this presentation.

All figures and information in this presentation are strictly confidential, they are by no means binding and thus indicative only.

© 2017 OMV Aktiengesellschaft, all rights reserved, no reproduction without our explicit consent.

Contact

Bernd Kometer EATTP-T Production Technology bernd.kometer@onv.com OMV Austria Exploration & Production Protteserstraße 40 2230 Gaenserndorf Austria

www.omv.com

OMV Exploration & Production

