

ESP Data Analytics: Predicting Failures for Improved Production Performance

Mohannad Abdelaziz, Rafael Lastra and J. J. Xiao, Saudi Aramco 13/06/2018

Electrical Submersible Pumps (ESPs) & World Energy

\$ SCOUT High production rates - up to 60,000 BPD • Variable Speed Drive 60% of the total world oil production (1) • 130,000 installations worldwide (1) • Discharge pressure (1) Dunham, 2013) Cable Pump Seal Motor Cross-over **ESP** Sensor

ESP Failures

Components of ESP [from (Alhanati, Solanki, & T. A. Zahacy, 2001)

Example of ESP Failed Item Statistics for One Field - After (Xiao, Shepler, Windiarto, Parkinson, & Fox, 2016)

Models Available

Data Available

Required for One Investigation!

Principal Component Analysis (PCA)

A multivariate analysis technique that is used for dimensionality reduction

 $T_{n \times p} = X_{n \times p} W_{pxp}$

Principal Component Analysis (PCA)

Multivariate analysis technique that is used for dimensionality reduction

Principal Component Analysis (PCA) made simple

(A) Data scatter in XYZ (3D) space, lies
on plane => possible to resolve into 2D
space (B)using the 1st and 2nd largest
orthogonal variance i.e. Component
C1 and C2 respectively (C) owing to
linear dependency

(D) C1 and C2 equal => difficult to determine change in C2 as result of C1(E) Start to see a differentiation between C1 and C2, more opportunity to jump from 2D to 1D space

(F) Noticeable differentiation between C1 and C2 => straight forward jump from 2D to 1D space

Mohannad Abdelaziz

Software Tools Built

First Installation

1st and 2nd PCs explained more than 66% of the data

Installation Date	Start-up Date	Failure Date	Root Cause
9-Apr-2004	6-Dec-2004	22-Oct-2006	Burnt/Damaged MLE

Second Installation

1st and 2nd PCs explained more than 79% of the data

Installation Date	Start-up Date	Failure Date	Root Cause
13-Feb-2007	26-Feb-2007	11-Aug-2010	Burnt/Damaged MLE

40

20

0

-20

-40

-60

-80

-100

-120

-100

Principal Component 2

Fifth Installation

Fifth Installation

Generalized PCA Model for all Installations

- One PCA model all installations
- Uniform conclusions about "failure modes" that are applicable to all
- Set the stage for generalization across other wells and fields
- Less susceptible to stable region selection

Generalized PCA Model for all Installations

Combined PCA - For all installations

Combined PCA - All stable regions

Summary of Results

- Failure of downhole sensor has major impact on PCA
- Method presented allowed detection of **anomalies**:
 - Motor temperature variations
 - High current reading
- PCA allowed additional dynamical changes in ESP systems:
 - Cluster shift two months prior to failure (1st installation)
 - Distinctive clusters (5th installation)
- Generalized Model Construction

Thank You

Questions?

