Long term well plug integrity assurance

A probabilistic modelling approach

Brian Willis
Well P&A required to protect **people** and **environment**, prescribed by **regulations** and remains responsibility of operator in **perpetuity**

- Across the North Sea between 2017 and 2025
 - 349 fields to be decommissioned (214 on UKCS)
 - 2500 wells for P&A
- £1.8bn for decommissioning on UKCS (2017)
 - 49% spent on P&A
- P_{50} estimates of £60bn to be spent up to 2025
 - Target to reduce to £39bn

HOW?
- New technology \rightarrow step change in costs & performance
- Risk based approach to P&A design

Challenges: Current practice & guidelines

• Cement: the de facto barrier material
• Well data varies with age and region
• Most P&A jobs require rigs
• Regulations and guidance differ between regions
• Prescriptive guidelines: a barrier to introduction of new technology
 – New materials: resins and Bismuth alloys
• UK Regulator imposes eternal responsibility
• Verification test: life assurance limitations

[6] Decommissioning case study pack, Claxton
Objectives

- Develop models and tools to support high integrity seal reliability prediction
 - Casing plugs
 - Annulus plugs
 - All well barrier elements
- Support technology qualification of new materials for P&A
- Prediction of plug life and overall well P&A integrity
- Supporting risk based approach to P&A design
- Supporting development of Bismuth alloys for P&A with a statistical plug life exceeding 3000 years
Benefits of a risk based approach to P&A

• Risk based P&A
 – Minimise environmental and safety risks
 – Optimise business risk

• Well specific P&A solutions
 – Simpler designs for lower risk wells
 – Increased focus on high risk wells

• Well barrier failure modes and failure mechanisms formally assessed

• Assess impact of new technology on risk
 – New plugging and sealing materials
 – New deployment technology

Risk based approach combined with new technology expected to deliver 30-50% reduction in costs
Plug technology qualification guidance

- New technology for P&A
- Technical Qualification Guidance
 - Oil and Gas UK: Materials and plug deployment focus
- TQP process guidance
 - DNVGL RP A203 or API RP 17Q
- TQP supports integrity assurance
Well barrier elements can fail

- Loss of barrier integrity a significant problem
 - Chance for hydrocarbon leakage to environment
 - Potentially irreparable for abandoned wells

a) Casing/annular cement micro-annulus
b) Cement plug micro-annulus
c) Bulk permeability
d) Damaged/corroded casing string
e) Fracture in annular cement
f) Annular cement/formation micro-annulus

Leak potential for a well barrier

- Leak needs failed barrier element with pressure differential
- Darcy’s equation used to assess flow potential for each path between isolated zones
- Plug failure logic represented as flow path block diagram

\[Q_{WB} = K_{eff} \frac{1}{\mu} \Delta P \]

Each mechanism has likelihood and consequence

Impact of uncertainty on long term WB performance

- Well barrier element parameters
 - Sampled distributions reflect degree of confidence / uncertainty
- Model parameters are dynamic
 - Time and environment dependent
 - Requires construction of material specific degradation models
- Leak rates and volumes
 - MCS approach
 - Demonstrates sensitivity of output to input parameters

Multiple barriers will improve reliability performance

Requires a system model
System model for well P&A: STEM-flow

- Multiple plugs, barriers and zones to be isolated
- Requires system model - **Seal Technology Evaluation Model (STEM-flow)**
Well P&A integrity system model

Well condition data
- Well design
- Drilling logs
- Cementing logs
- Pressure monitoring
- Fluid compositions
- Well surveys

Well barrier models
- Casing plug
- Annulus plug
- Additional barrier

Barrier data
- Barrier materials
- Deployment method
- Casing inspections
- Cement bond logs
- Barrier position

System model

Parameter uncertainties

STEM-flow

Output

Casing plug sub-model

Annulus plug sub-model
Well P&A integrity modelling output

Pressures

Isolated Zone Pressures vs Time

Leak rates & volumes

Flow rate across the barrier vs Time

Leak acceptance criteria

Probability of Failure

Statistical life of plug

Current technology
New technology

Statistical life of well

Well life W(F)
Support for seal technology qualification

Predictive modelling is only realistic approach to demonstrate 3000 year life
Support for risk based well P&A integrity modelling

- Well P&A barrier design
- Plug deployment method

Impacts/Consequences:
- Financial
- HSE

Input Data

STEM-flow

Leak rate
Volume emitted

Probability of failure
- Plug Life, $P(F)$
- Well Life, $P(F)$

Risk evaluation

Risk Acceptable?
- No
- Yes

Integrity Report

Consistent with DNVGL-RP-E103

Potential for simpler designs consistent with level of risk
Summary of STEM-flow applications

Application

• Predictive STEM-flow tool
 – Individual & multiple plugs
 – Statistical life and well integrity risks

STEM-flow provides support for

• New P&A technology development
 – Technology qualification / risk assessments
 • New plug / sealing materials and technology
 • Novel deployments

• Operator integrity assurance
 – Assessment of plugging / sealing technology
 • Existing technology
 • New technology
 – Quantitative evidence to support P&A well integrity assurance

Rawwater Bismuth alloy plug installation
Thank you for listening

Brian Willis – Brian.Willis@Astrimar.com
John Strutt – John.Strutt@Astrimar.com

www.astrimar.com