WELL VERIFICATION FREQUENCY - JUSTIFICATION FOR CHANGE?

Richard Conway
Well Integrity Engineer
Overview

• Objectives
• RSRUK Wellstock
• Verification process
• Historical data review
• Verification data - results
• Changes and budget planning
• Re-cap
Study Objectives

• To investigate failure rates for safety critical components on all platform wells
• Determine the ideal spacing between Well Verification Routines
• Identify any opportunity to extend the frequency or optimise activities
RSRUK Well Stock

• 10 Platforms / 241 wells - most legacy
• 4 different tree/wellhead vendors
• Equipment in excess of 30 years old
• Split & solid gate valves
• Loose spool & multi-bowl wellheads
• Metal to metal & elastomeric seals
• A range of well types
 – Natural producers / water injection
 – Gas lift / ESPs / Jet Pumps
The Challenge

The primary objective is to keep people safe, but:

• Well Verification costs:
 – Resources
 – Beds
 – Production Deferment

• We need to:
 – Optimise utilisation
 – Focus attention where needed
 – Minimise shut-in time

While ensuring the barrier envelope is intact
Well Verification Cycle

6 Month
- Test all tree valves
- Test DHSVs and Control Lines

12 Month
- Test all tree and wellhead valves
- Test DHSVs and Control Lines
- KP4 Survey

Biennial
- Annulus Top-Up/Pressure Test
Well Verification Routine

• Not Preventative Maintenance
 – We test, grease and function
 – Repair if we don’t need a tubing plug
 – Verify the well condition, make sure there are barriers and make sure personnel are safe from the well

• Well Verification – aligned to:
 – Internal performance standard
 – Safety Case Regulations
 – Design and Construction
 – Health and Safety at Work
Output & Issues

• Previously only provided assurance to continue
 – Verify the well, update a status summary, inform

• But:
 – Very little time looking for trends
 – No historical evaluation
 – What did all the data tell us?
Transforming Data to Information

Well Integrity & Reporting For Dummies

Learn to:
- Analyze data and report it in a way that makes sense
- Slice and dice data from different perspectives
- Create eye-catching and understandable reports, visualizations, and dashboards
- Automate redundant reporting

I. P Squint

Excel Workbook For Dummies

Practice for the Rest of Us!
Well Verification - Evaluation

- 6 year review across all surface wells
- Looking at failures on all components
- Pre & Post grease and function

<table>
<thead>
<tr>
<th>Pre Component</th>
<th>2013</th>
<th>2014 / 1</th>
<th>2015 / 2</th>
<th>2016 / 2</th>
<th>2017 /</th>
<th>Average</th>
<th>Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMV</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>UMV</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>FWV</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Swab</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>GMV</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>A-ann vlv (Live)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>A-ann vlv (Offside)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>B-ann vlv (Live)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B-ann vlv (Offside)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>C-ann vlv</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>DHSV</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>DHSV Control Line</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>ADHSV</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ADHSV Control line</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Post Component	2013	2014 / 1	2015 / 2	2015 / 2	2016 / 2	2017/1	Average	Failure		
LMV	0	0	1	0	0	1	0	2%	2.38E-02	
UMV	0	0	2	0	0	1	1	4%	3.57E-02	
FWV	3	2	1	3	3	1	2	15%	1.55E-01	
Kill	1	0	0	1	1	0	1	4%	3.57E-02	
Swab	0	0	0	0	0	0		0%	0.00E+00	
GMV	1	0	3	1	1	1	4	2	12%	1.19E-01
A-ann vlv (Live)	0	0	0	0	0	0		0%	0.00E+00	
A-ann vlv (Offside)	1	1	1	1	1	1		7%	0.00E+00	
B-ann vlv (Live)	0	0	0	0	0	0		0%	0.00E+00	
B-ann vlv (Offside)	0	0	0	0	0	0		0%	0.00E+00	
C-ann vlv	0	0	0	0	0	0		0%	0.00E+00	
DHSV	0	0	0	0	0	0		0%	0.00E+00	
DHSV Control Line	0	0	0	0	0	0		0%	0.00E+00	
ADHSV	2	1	0	2	2	0	1	8%	8.33E-02	
ADHSV Control line	1	2	0	1	1	1	1	7%	7.14E-02	

- Well Verification - Evaluation
- 6 year review across all surface wells
- Looking at failures on all components
- Pre & Post grease and function

- Component Analysis
 - LMV: 2013 - 2017
 - UMV: 2013 - 2017
 - FWV: 2013 - 2017
 - Swab: 2013 - 2017
 - GMV: 2013 - 2017
 - B-ann vlv (Live): 2013 - 2017
 - B-ann vlv (Offside): 2013 - 2017
 - C-ann vlv: 2013 - 2017
 - DHSV: 2013 - 2017
 - DHSV Control Line: 2013 - 2017
 - ADHSV: 2013 - 2017
 - ADHSV Control line: 2013 - 2017

- Average Failure Rates:
 - LMV: 27%
 - UMV: 23%
 - FWV: 31%
 - Swab: 8%
 - GMV: 15%
 - A-ann vlv (Live): 4%
 - A-ann vlv (Offside): 7%
 - B-ann vlv (Live): 0%
 - B-ann vlv (Offside): 0%
 - C-ann vlv: 0%
 - DHSV: 0%
 - DHSV Control Line: 4%
 - ADHSV: 6%
 - ADHSV Control line: 7%

- Failure Rates:
 - LMV: 2013 - 2017
 - UMV: 2013 - 2017
 - FWV: 2013 - 2017
 - Swab: 2013 - 2017
 - GMV: 2013 - 2017
 - B-ann vlv (Live): 2013 - 2017
 - B-ann vlv (Offside): 2013 - 2017
 - C-ann vlv: 2013 - 2017
 - DHSV: 2013 - 2017
 - DHSV Control Line: 2013 - 2017
 - ADHSV: 2013 - 2017
 - ADHSV Control line: 2013 - 2017

- Evaluation Criteria:
 - Failure rate analysis
 - Grease and function verification
• Big range in valve reliability
• **Blue** – failure in as-found condition
• **Red** – failure after grease & function
Xmas Tree Master Valves

LMV Tests

- Breakdown by platform, A to I
- Variation between site and valve

UMV Tests
Swab & FWV Valves

- No pattern across assets
- Failure rates consistent within sites
DHSV & GMVs

DHSV Tests

- As Found:
 - A: 0%
 - B: 3%
 - C: 6%
 - D: 4%
 - E: 15%
 - F: 2%
 - G: 3%
 - H: 4%
 - I: 7%

- Post Maint.:
 - A: 4%
 - B: 5%
 - C: 4%
 - D: 12%
 - E: 2%
 - F: 0%
 - G: 5%
 - H: 7%
 - I: 4%

GMV Tests

- As Found:
 - A: 0%
 - B: 5%
 - C: 10%
 - D: 15%
 - E: 23%
 - F: 12%
 - G: 20%
 - H: 25%
 - I: 0%

- Post Maint.:
 - A: 0%
 - B: 3%
 - C: 0%
 - D: 4%
 - E: 0%
 - F: 0%
 - G: 4%
 - H: 0%
 - I: 3%

- **Notes:**
 - Same equipment used on a number of platforms
 - Failure rates different due to well conditions
Platform A: Failure Tendency

SWAB: 0%
DHSV: 0%
GMV: 15%
FWV: 31%
UMV: 23%
LMV: 27%
Results

• Verification routines identified impairment, failures drove reactive repairs

• Now looking for trends

• Historical evaluation
 – Failure rates on initial test are high
 – Failure rates post grease/ function are circa <10%
 – Now have reliability data
12 Month Verification Schedule

Evaluation of the failure rates have identified that, yearly well verification confirms:

• Well stock status is understood
• Compliance with barrier philosophy
• The health and safety of personnel is ensured
• Barriers are available during shut-down
6 Month Verification Schedule

Failure rates have identified that:

• Verification testing on a 6 monthly cycle confirms previously known failures if repairs have not been carried out

• Following grease and function failure rates drop to a predictable rate
Predictive Failure Model

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>xxxx</td>
<td>A-Annulus Valve Failure</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>3.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Actuator Failure</td>
<td>1</td>
<td>2</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Actuator piston seal weep</td>
<td>1</td>
<td>1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B-Annulus Valve Failure</td>
<td>1</td>
<td>3</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C-Annulus Valve Failure</td>
<td>16</td>
<td>1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control Fluid Leak</td>
<td>1</td>
<td>1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control line block failure</td>
<td>1</td>
<td>1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FWV Failure</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GMV Failure</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>INRV Failure</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KP4 inspection finding</td>
<td>2</td>
<td>2</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KWV Failure</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMV Failure</td>
<td>1</td>
<td>1</td>
<td>1.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Needle Valve</td>
<td></td>
<td>1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stem Packing failure</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>3.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test/injection fitting failure</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>3.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tree valve stem seal leak</td>
<td></td>
<td>1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tie Down Pin</td>
<td></td>
<td>1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Can’t predict which wells will fail, but we can predict which failures may happen, so:

- Better budget planning
- Identify required platform days
- Shouldn’t be a surprise
Summary

• 12 monthly Well Verification Routine
 1. Assures the well barrier envelope is sound.
 2. Identify repairs that must be carried out.

• Reactive repairs within required timeframe
 3. Assures compliance with company and industry best practice.
 4. See Point 1

• 6 monthly grease and function
 4. Confirms valves will close as required
 5. Failure data on how many valves will seal
 6. See Point 1
Conclusions

• Verification testing is essential to ensure the barrier envelope
• Evaluation of the data is critical
• From this data we changed to a risk based verification sequence, but not changed the frequency
• Historical data has now led to better budget planning.
Take Away

• Next focus is down hole
• The challenge is data acquisition using new technology
• This will complement the data we gather from verification testing of annulus, wellheads, trees and DHSVs
Re-Cap

- 241 wells on 10 platforms
- Good understanding of current status
- Verification is vital to compliance
- Historical data / statistical evaluation
- Failure rates understood
- Same schedule / different routine
- Predictive Failure Model
- Budget / resources optimised
Questions?