

Distributed Sensing in Offshore Fields: Seismic and Flow Monitoring for Reservoir Characterization

J. Andres Chavarria

05/15/2019

© 2019 OptaSense Ltd.

Introduction

DAS Seismic Measurements and 4D

Seismic Acquisition during Production monitoring

Conclusions

Why Use Distributed Acoustic Sensing Offshore?

- More Fiber Optic is being deployed in complex wells i.e. smart well monitoring, deep water
- FO is deployed to lower the number of interventions in wells
- FO being deployed as part of life of well monitoring
- DAS measurements can either be used by reservoir/petroleum engineers or geoscientists
- Geoscience applications are seen as an add-on while monitoring wells → Lower intervention costs compared to conventional tools

a QinetiQ compan

Advances in Interrogator Technology are yielding higher SNR

Single Laser IU

Multi Laser IU

Repeatability in DAS and CO2 Plume Tracking with TimeLapse VSP

plumes

Repeatable DAS Surveys capture subtle amplitude anomalies from CO2

a QinetiQ compar

Field QC - Gauge length impact on SNR

Change Interrogator Settings in Real Time to ensure best quality Signals

Gauge Length Modeling i.e. Deep Targets

i.e. estimate the longest Lg without introducing a notch in the spectra

Smaller Boat – Lower Costs → Same Quality Image 32m Gauge Length

Decreasing Airgun Size →

Wang et al. 2017

Reduced Source Size and Coverage for Low-Cost Reservoir Monitoring

Targeted source footprints and smaller boat size

Multi-Well Acquisition on producing and shut-in wells provide complementing views of the reservoir

Tatanova et al. 2017

GOM: 4D Reservoir hardening and softening

Multiwell 4DVSP: Water Injector, Gaslift producer(s) and Inactive NRMS 7%

Smaller Faster Surveys: 36000 shots ~ 6000 shots; 5110in3 – 500in3

Zwartjes et al. 2017

Blow Gas Cloud - Offshore SE Asia

55000 Shots; Three Highly Deviated and Producing Wells Reflections are images below gas cloud with DAS receiver sensors

AbdulRahim et al, 2017

Below Gas Cloud - Offshore SE Asia

Multiwell 3DVSP acquired during dual production string activity

Seismic2

Signal analysis enables us to extract seismic data from variable production noise

Information in Different Frequency Bands

A Wealth of Information

A single DAS measurement can convey different information in different frequencies:

- Low frequencies:
 - Liquid transport
 - Fluid interfaces
 - Thermal disturbances
- Medium frequencies:
 - Flow through ICVs
 - Flow past obstacles
- High frequencies:
 - Flow through GLVs

in 't Panhuis, SPE-170917-MS

Assess Entire Reservoir Production Over Time

Conclusions

- DAS IU can measure seismic waves from active or passive sources and fluid signals from the well engineering
- Changing optical settings in the IU can enhance the responses that are of interest → Not all signals are created equal and should be interrogated with certain considerations
- DAS data is repeatable and suitable for low-cost 4D seismic surveys
- Dual DAS measurements can enhance signal processing across multiple disciplines → Geophysicist's Noise can be Petroleum Engineer's Signal!
- Opportunities for fiber sensing may include subsea

Andres.Chavarria@OptaSense.com

