Surfactant Stimulation in Offshore Horizontal Wells to Improve Polymer Injectivity for Captain Field EOR

Adam Jackson, Matt Dean, Jessica Lyon, Chevron Upstream Europe
Varadarajan Dwarakanath, Dennis Alexis, Anette Poulsen, Chevron ETC
Aaron Wilhelm, Pierre Begin, Chevron Oronite

DEVEX Conference
May 2019
Captain Field surfactant stimulation of multiple offshore horizontal injection wells

Chemical EOR for injectivity enhancement

- What: Surfactant-polymer stimulation
- Why: Injectivity benefits
- How: Screening, Design, Execution, Results
- Learnings and applicability for both waterflood and polymer flooding

© 2019 Chevron North Sea Limited
Surfactant-polymer stimulation definition

Mobilize trapped oleic phase in pores around injector to remove relative permeability effects

- Enables ~100% aqueous injection [water or polymer] (single phase)
- Reduced near wellbore ΔP skin/damage (no capillary pressure)
- Highest potential matrix injectivity (single-phase permeability)

Oil is released further from wellbore, where injectivity is less impacted by oil saturation
Injectivity benefits

Injectivity issues plague many wells in assets. SP stimulations may offer a cost-effective solution for improving injectivity which reduces risks associated with high injection pressures.

Good Capital Stewardship:
- Low-cost alternative to redrill
- Proven with stimulation vessel and minor facility modifications
- OPEX, not CAPEX

Good Reservoir Management:
- Increase k_{rw} endpoint and injectivity above a new drilled well
- Maintain higher processing rates
- Reduce subsurface integrity risks

Illustration of stimulation benefits to pressure, rate and cumulative fluid injected

![Graph showing the benefits of SP stimulations on injection BHP, rate, and cumulative fluid injected.](image_url)
Identifying damage mechanism

Mechanism

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Poor water quality (OIW, TSS, bacteria, etc.)</td>
</tr>
<tr>
<td>2.</td>
<td>Polymer crosslinking damage</td>
</tr>
<tr>
<td>3.</td>
<td>Polymer molecule damage</td>
</tr>
<tr>
<td>4.</td>
<td>Polymer oil phase damage</td>
</tr>
<tr>
<td>5.</td>
<td>Mechanical skin damage (D&C, sand shifting, fines, etc.)</td>
</tr>
<tr>
<td>6.</td>
<td>Poor polymer mixing*</td>
</tr>
</tbody>
</table>

Diagnostic

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Field confirmed - injectors use same produced water stream, field data shows oil in water</td>
</tr>
<tr>
<td>2.</td>
<td>Lab refuted – based on measurements with field product</td>
</tr>
<tr>
<td>3.</td>
<td>Lab confirmed – no large measure of damage (even in tight surrogate rock experiments)</td>
</tr>
<tr>
<td>4.</td>
<td>Lab confirmed – significant damage contribution (coreflood face plugging)</td>
</tr>
<tr>
<td>5.</td>
<td>No way to confirm/deny in lab. A field coil tubing acid job showed low improvement to injectivity</td>
</tr>
<tr>
<td>6.</td>
<td>Field confirmed – stimulation wellhead fluid observations and ILT gels afterwards (C52)</td>
</tr>
</tbody>
</table>

Remove oil phase damage (from 1 and 4) with surfactant-polymer solution

recognized as strong injectivity decline mechanism after C52 stimulation
chemical and facility design requirements
(need a workable solution for both)

CHEMICAL
Surfactant to solubilize oil saturations
Polymer to provide fluid mobility control
Phase behaviour to formulate
 • Solubilization ratio
 • Compatibility with reservoir fluids
Commercial supply chain and registration

FACILITY
Tie-in point to injection water
Hanger for vessel-platform hose connection
Polymer mixing capability (from concentrate)
Vessel communications and simultaneous operations

Phase behavior scan: fluid interface changes
Phase behavior data: plot of oil-water solubilization
Captain design challenges

Captain Field application

- Closed system with 200ppm crude oil (OIW)
- $S_{or} = 17\text{-}27\%$ crude oil
- Liquid polymers are 30\text{-}50\% mineral oil
- Tracers to verify well communication
- Constant salinity without gradient \rightarrow Winsor type 1
- Deployment from vessel at low rates

Phase trapping illustration from SPE 179657

Phase separation in neat liquid polymer product
Polymer injection mobility

• Target displacement of viscous emulsions created
• Mobilize phase damage away from wellbore
• Viscosity needed to compensate for improved relative permeability of injection fluid (higher mobility)

![Graph showing emulsion viscosity vs. concentration and water fraction.](image)

- Polymer designed to mobilize peak emulsion viscosity
- Steps in polymer viscosity to ensure pressure stays below the maximum limit
Facility execution – stimulation vessel and platform

- Injection from a stimulation vessel during suitable weather
- Acid tank neutralization, flushing procedure and quality control
- Hose hanger installed on platform for chemical transfer line
- Temporary pipework rigged up on platform to dose into injection line

SLB Big Orange XVIII connecting to Captain platform
Chemical execution – fluids prepared and injected

TOP: field chemical samples BOTTOM: C43 wellhead samples (demonstrating flowline clean-out)
Field surveillance, analysis and optimization

- Capture well performance data from meters and gauges
- Real-time wellhead fluid sample tests
- Onsite analysis and optimization of fluid rates
- Make better decisions and ensure execution matches design

Patent number: 10168265

Chevron PMU for offshore core floods and wellhead fluid testing described in SPE190329
Captain surfactant stimulation #1 (C43)
Objective: prove chemical concept in most expendable polymer injection well

- 100% injectivity increase
- 1st offshore surfactant stimulation in a long horizontal injector
- Only 200 bbls of surfactant chemical formulation created a sustainable 2X injectivity for over 7 months in 4000+ft horizontal completion
Captain surfactant stimulation #2 (C52)
Objective: prove chemical repeatability and improve performance and efficiency

- 3X injectivity increase
- Achieved better improvement than C43, in a longer completion
- Decline after stimulation was confirmed to be poor polymer mixing throughout well-life
Captain surfactant stimulation #3 (C60)
Objective: establish performance improvement for polymer flood

Surfactant Stimulation
• Injected surfactant-polymer package, one dilution step
• 2500bbls surfactant fluid – April 2018
• Logged saturation and outflow profile – Sept 2018

Results
• Injectivity improvement → >40% uplift
• Volume → normalized formula volume required per foot
• Longevity → sustained max injection for 4+MMbbls
• Saturation log → 6-11% across entire completion
• Payout → cash positive in < 8 months online

Saturation log results: Sorc below Sorp in all wellbore

Injection rate results: Plan versus Actual
Summary

Conclusions
- Surfactant-polymer stimulation successfully increases injectivity
- Chemical and facility design provided good field execution
- Polymer was necessary to mobilize emulsions

Opportunities realized
- Higher injectivity and processing rates
- Avoid re-drilling injectors
- Operate under safer conditions

Path Forward:
- Batch treatment of injection wells
- Use on waterflood injector(s)
Acknowledgements

Special thanks to:

dana PETROLEUM
Oronite
Schlumberger
kemira
SNF FLOERGER

Also, Chevron Upstream Europe and ETC for collaboration and permission to publish.