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Low installation 
cost

Compared to steel sleeve repair. 

Safe
Eliminates hot work hazards

Non disruptive
No operation interruption.

>25 years
Industry application 

Internationally 
standardized
ISO/TS 24817, ASME PCC-2 

Diverse applications
Sewer, water, oil and gas, offshore structures

Continuous 
development
JIP, research insights

Introduction

Increased utilization
A spike in investor interests



Repair system

1. Fibre-reinforced polymer (FRP) sleeve: primary load carrying component, high strength
2. Interlayer adhesive: primary load transfer component (defect free pipe section – sleeve)
3. Grout (putty): primary load transfer component (defect pipe section – sleeve), ensure uniform 

profile for the composite layer.



Known:

• The stresses upstream and downstream the composite repair 
section are functions of nature of loading, repair strategy, repair 
thickness, ply orientation, putty properties, surface finishing, etc
[1].

• The stresses at the repaired section are primarily dependent on 
the status of the interlayer between the pipe and the composite 
[2].

• Residual stresses can lower interlayer shear limit, leading to poor 
load transference and higher stresses at the repaired section [3].

Research questions???



Unknown:

• The relationship between degradation of interlayer stiffness and 
crack nucleation at the repaired section.

• The relationship between crack location and its stress intensity.

• The relationship between damage evolution of the interlayer and 
crack propagation at the repaired section. 

Research questions???



For a brittle crack, the linear elastic fracture mechanics
asymptotic solution allows for the characterisation of the local
crack-tip stress fields using solely the elastic stress intensity
factor K.

Theoretical basis
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Crack initiation in bulk materials can be simplified using three 
distinct modes and a damage initiation criterion based on 
traction separation laws
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Crack propagation in bulk materials can be simplified using the 
Benzeggagh-Kenane (B-K) expression for damage evolution based 
on the critical energy release rate 𝐺𝐶 at a material point [4]
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• The finite element (FE) fracture mechanics approach was 
employed via the virtual crack closure technique (VCCT) and 
the extended finite element method (XFEM).

• All analysis were carried out using CAE software Abaqus.

• Post processing was carried out automatically using Python 
scripts.

Methodology



Adhesive strength validation: Pull out test

• Repair: length = 215mm, thickness = (7, 9, 15)mm

• 3 ½ in, Sch 10, 3.05mm WT

Validation models
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Figure: Axial limit for different repair thickness
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Mesh sensitivity studies: XFEM

• Element characteristic dimension as a function of h-refinement partition.

• Convergence of stress fields at enriched region for XFEM application.

• For an elliptical crack, convergence issues associated with crack front occurring at 
element tangential plane / not cutting through sufficient element supports.
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Model et/a el/a ec/a Nc KI

[𝑴𝑷𝒂 𝒎]
εref(%)

R6

εref(%)

BS7910

STD

[𝑴𝑷𝒂]
εrel(%)

M1 0.2 0.2 0.2 5 21.98 17.15 14.57 0.07 12.48

M2 0.12 0.12 0.12 8 19.48 3.82 1.53 1.34 -0.32

M3 0.09 0.09 0.09 11 19.31 2.94 0.67 0.82 -1.17

M4 0.06 0.06 0.06 15 19.54 4.15 1.86 1.97 Ref

𝐍𝐨𝐫𝐦𝐚𝐥𝐢𝐳𝐞𝐝 𝐚𝐱𝐢𝐚𝐥 𝐥𝐢𝐦𝐢𝐭 𝐍𝐨𝐫𝐦𝐚𝐥𝐢𝐳𝐞𝐝 moment capacity

Closed form solution 0.816 0.165

FE results (this study) 0.777 0.152

Relative error (%) 4.68 -7.78

Comparison between analytical limit load solutions [6] for constant depth circumferential 
crack and XFEM limit load

Table: Influence of element dimension on solution and mesh convergence

Table: Axial and moment capacity



1. Adhesive failure and crack properties
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Figure: (a) Influence of adhesive strength on J-value (b) ) Influence of adhesive strength on maximum SERRR
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2. Repaired defect and stress fields

Lr = 331 mm

Ld = 100 mm

rf = 4 mm

θd =40o,w = 76.5 mm

Pipe (AISI 1010): 𝐷𝑜 = 219.1 𝑚𝑚, 𝑡 = 12.7 𝑚𝑚, 𝐸 = 205 𝐺𝑃𝑎, 𝑣 = 0.29, 𝜎𝑦 = 315 𝑀𝑃𝑎, 𝜎𝑈𝑇𝑆 = 430 𝑀𝑃𝑎,

𝜀𝑓 = 29%,𝐾𝐼𝐶 = 43 𝑀𝑃𝑎 𝑚, 𝐺𝑐 = 8.26𝑘𝑁/𝑚

Grout: 𝐸 = 8 𝐺𝑃𝑎, 𝑣 = 0.36, 𝜎𝑈𝑇𝑆 = 60 𝑀𝑃𝑎, 𝜎𝑈𝐶𝑆 = 1.5𝜎𝑈𝑇𝑆

Repair wrap (GFR): 𝐸ℎ𝑜𝑜𝑝 = 18.2 𝐺𝑃𝑎, 𝐸𝑎𝑥𝑖𝑎𝑙 = 12.7 𝐺𝑃𝑎, 𝑣12 = 𝑣13 = 0.2, 𝑣23 = 0.38, 𝐺12 = 𝐺13 = 5 𝐺𝑃𝑎,

𝐺23 = 2.4 𝐺𝑃𝑎, 𝑡𝑝𝑙𝑦 = 0.625𝑚𝑚



Internal pressure Axial loading Pure bending

Deformation modes and equivalent stress distribution

• It is general knowledge that the capacity of the load transfer mechanism between the 
wrapped pipe section and the composite determines the stress distribution and critical 
hotspots at the repaired section.

• Generally, high strength reinforcing materials, high speed curing and performance 
adhesives and high compressive strength grout are required to achieve an optimum 
repair system.



Internal pressure Tension



Crack geometric labels

𝑎= crack depth

2𝑐= crack front length

2𝑐 = 2𝜃𝑟𝑜 (2𝜃 𝑖𝑛 𝑟𝑎𝑑𝑖𝑎𝑛𝑠)

3. Repaired defect and crack stress fields

𝑎

2𝜃

𝑡

𝑟𝑚

𝑟𝑜
𝑟𝑖
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Figure: Influence of contact stiffness on crack tip stress intensity (a) Tension  (b) internal pressure
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Figure: Influence of grout stiffness on the crack stress field intensity (a) tension (b) internal pressure

Grout stiffness effect
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4. Influence of crack location
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1. The load transfer between the defect pipe and the repair wrap signifies the 
most important factor in determining the severity of the crack stress fields.

2. The influence of the crack orientation on the crack stress fields depends on 
the direction of the maximum principal stress and the crack plane.

3. For axial load cases with circumferential cracks, a geometric factor can be 
used as a quantitative measure of the evolution of the stress fields as a 
function of repair design variables.

4. Utilizing a high compressive strength/stiffer grout improves load 
transference, and thus lowers the magnitude of the crack stress fields.  

5. For a repair system under internal pressure, a properly machined defect can 
arrest circumferential crack propagation. For the same system under 
tension, the defect finishing has insignificant influence on crack 
propagation.

Conclusions
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