

Ikechukwu Onyegiri

PhD Candidate in Pipe Joint Mechanics

Introduction

Repair system

- 1. Fibre-reinforced polymer (FRP) sleeve: primary load carrying component, high strength
- 2. Interlayer adhesive: primary load transfer component (defect free pipe section sleeve)
- 3. Grout (putty): primary load transfer component (defect pipe section sleeve), ensure uniform profile for the composite layer.

Research questions???

Known:

- The stresses upstream and downstream the composite repair section are functions of nature of loading, repair strategy, repair thickness, ply orientation, putty properties, surface finishing, etc [1].
- The stresses at the repaired section are primarily dependent on the status of the interlayer between the pipe and the composite [2].
- Residual stresses can lower interlayer shear limit, leading to poor load transference and higher stresses at the repaired section [3].

Research questions???

<u>Unknown:</u>

- The relationship between degradation of interlayer stiffness and crack nucleation at the repaired section.
- The relationship between crack location and its stress intensity.
- The relationship between damage evolution of the interlayer and crack propagation at the repaired section.

Theoretical basis

For a brittle crack, the linear elastic fracture mechanics asymptotic solution allows for the characterisation of the local crack-tip stress fields using solely the elastic stress intensity factor K.

$$\lim_{r \to 0} \sigma_{ij}(r, \theta) = \frac{1}{(2\pi r)^{1/2}} \left[K_I f_{ij}^I(\theta) + K_{II} f_{ij}^{II}(\theta) + K_{III} f_{ij}^{III}(\theta) \right]$$

Crack initiation in bulk materials can be simplified using three distinct modes and a damage initiation criterion based on traction separation laws

The quadratic damage initiation criterion is given as

$$\left\{\frac{\langle t_n \rangle}{t_n^o}\right\}^2 + \left\{\frac{t_s}{t_s^o}\right\}^2 + \left\{\frac{t_t}{t_t^o}\right\}^2 = 1$$

Crack propagation in bulk materials can be simplified using the Benzeggagh-Kenane (B-K) expression for damage evolution based on the critical energy release rate G^{C} at a material point [4]

$$G^{C} = G_{n}^{C} + (G_{s}^{C} - G_{n}^{C}) \left\{ \frac{G_{s}}{G_{T}} \right\}^{m}$$

strain energy release rate ratio (SERRR) = $\frac{\text{strain energy release rate (SERR)}}{\text{critical energy release rate (G^C)}}$

Methodology

- The finite element (FE) fracture mechanics approach was employed via the virtual crack closure technique (VCCT) and the extended finite element method (XFEM).
- All analysis were carried out using CAE software Abaqus.
- Post processing was carried out automatically using Python scripts.

Validation models

Adhesive strength validation: Pull out test

- Repair: length = 215mm, thickness = (7, 9, 15)mm
- 3¹/₂ in, Sch 10, 3.05mm WT

Adhesive layer theory [5]

$$G_{i} = K_{i,int} \frac{1}{2} \left(\frac{1}{E_{r}} + \frac{1}{E_{s}} \right) \left(\frac{2\alpha_{m} - 1}{\alpha_{m}^{2}} \right) \quad for \ i = I, II$$

$$\alpha_{m} = \frac{E_{S}}{E_{\Gamma} \left(2 + \frac{E_{S}}{2} \left(\frac{1 + v_{\Gamma}}{E_{\Gamma}} - \frac{1 + v_{S}}{E_{S}} \right) \right)}$$

E = Elastic modulus v = Poisson's ratio $K_{i,int}$ = Stress intensity factor for mode i r, s = repair, substrate

Mesh sensitivity studies: XFEM

- Element characteristic dimension as a function of h-refinement partition.
- Convergence of stress fields at enriched region for XFEM application.
- For an elliptical crack, convergence issues associated with crack front occurring at element tangential plane / not cutting through sufficient element supports.

Model	e _t /a	e _l /a	e _c /a	N _C	K _I [<i>MPa√m</i>]	ε _{ref} (%) R6	^ɛ ref ^(%) BS7910	STD [<i>MPa</i>]	^ε rel ^(%)
Мı	0.2	0.2	0.2	5	21.98	17.15	14.57	0.07	12.48
M2	0.12	0.12	0.12	8	19.48	3.82	1.53	1.34	-0.32
M ₃	0.09	0.09	0.09	11	19.31	2.94	0.67	0.82	-1.17
M4	0.06	0.06	0.06	15	19.54	4.15	1.86	1.97	Ref

Table: Influence of element dimension on solution and mesh convergence

Comparison between analytical limit load solutions [6] for constant depth circumferential crack and XFEM limit load

Table: Axial and moment capacity

	Normalized axial limit	Normalized moment capacity
Closed form solution	0.816	0.165
FE results (this study)	0.777	0.152
Relative error (%)	4.68	-7.78

1. Adhesive failure and crack properties

Figure: (a) Variation of J-value along crack path (b) influence of tension on adhesive failure and propagation direction (c) shear stress distribution (d) Damage ratio along repair length

Figure: (a) Influence of adhesive strength on J-value (b)) Influence of adhesive strength on maximum SERRR

2. Repaired defect and stress fields

<u>Pipe (AISI 1010)</u>: $D_o = 219.1 \text{ mm}, t = 12.7 \text{ mm}, E = 205 \text{ GPa}, v = 0.29, \sigma_y = 315 \text{ MPa}, \sigma_{UTS} = 430 \text{ MPa}, \varepsilon_f = 29\%, K_{IC} = 43 \text{ MPa}\sqrt{m}, G_c = 8.26 \text{ kN/m}$

<u>Grout</u>: E = 8 GPa, v = 0.36, $\sigma_{UTS} = 60 MPa$, $\sigma_{UCS} = 1.5\sigma_{UTS}$

<u>Repair wrap (GFR)</u>: $E_{hoop} = 18.2 \ GPa$, $E_{axial} = 12.7 \ GPa$, $v_{12} = v_{13} = 0.2$, $v_{23} = 0.38$, $G_{12} = G_{13} = 5 \ GPa$, $G_{23} = 2.4 \ GPa$, $t_{ply} = 0.625 mm$

Deformation modes and equivalent stress distribution

- It is general knowledge that the capacity of the load transfer mechanism between the wrapped pipe section and the composite determines the stress distribution and critical hotspots at the repaired section.
- Generally, high strength reinforcing materials, high speed curing and performance adhesives and high compressive strength grout are required to achieve an optimum repair system.

3. Repaired defect and crack stress fields

$\frac{\text{Crack geometric labels}}{a= \text{crack depth}}$ 2c = crack front length $2c = 2\theta r_o (2\theta \text{ in radians})$

For LEFM in homogenous 3D bodies, the intensity of the crack tip stress field can be expressed by the effective stress intensity factor

$$K_{eff} = \sqrt{K_{\rm I}^2 + K_{\rm II}^2 + \frac{K_{\rm III}^2}{(1 - \nu^2)}}$$

$$K_r = \frac{K_{eff}}{K_{mat}}$$

Influence of contact stiffness

Figure: Influence of contact stiffness on crack tip stress intensity (a) Tension (b) internal pressure

Defect and crack geometry effect

→ w/2c=1.5 → w/2c=1.9 → w/2c=2.3 → w/2c=2.6 → w/2c=3.0

Figure: Influence of defect dimension and crack depth on the crack stress field intensity for a 0° crack under tension

Grout stiffness effect

Figure: Influence of grout stiffness on the crack stress field intensity (a) tension (b) internal pressure

Figure: Influence of (a) contact stiffness (b) grout stiffness on the shear stress distribution

4. Influence of crack location

Conclusions

- **1.** The load transfer between the defect pipe and the repair wrap signifies the most important factor in determining the severity of the crack stress fields.
- 2. The influence of the crack orientation on the crack stress fields depends on the direction of the maximum principal stress and the crack plane.
- **3.** For axial load cases with circumferential cracks, a geometric factor can be used as a quantitative measure of the evolution of the stress fields as a function of repair design variables.
- **4.** Utilizing a high compressive strength/stiffer grout improves load transference, and thus lowers the magnitude of the crack stress fields.
- 5. For a repair system under internal pressure, a properly machined defect can arrest circumferential crack propagation. For the same system under tension, the defect finishing has insignificant influence on crack propagation.

References

- Phan HB, Holloway DS, Jiao H. An investigation into the effect of roughness conditions and materials on bond strength of CFRP/steel double strap joints. Australian Journal of Structural Engineering. 2015;16(4):292-301.
- 2. Alexander C, Ochoa OO. Extending onshore pipeline repair to offshore steel risers with carbon–fiber reinforced composites. Composite Structures. 2010;92(2):499-507.
- **3.** Taheri F. 18 Advanced fiber-reinforced polymer (FRP) composites for the manufacture and rehabilitation of pipes and tanks in the oil and gas industry. In: Bai J, editor. Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications: Woodhead Publishing; 2013. p. 662-704.
- 4. Benzeggagh ML, Kenane M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Composites Science and Technology. 1996;56(4):439-49
- 5. Frost SR, Lee RJ, Thompson VK. Structural Integrity of Beams Strengthened with FRP Plates Analysis of the Adhesive Layer. Structural Faults and Repair; London: Engineering Technics Press; 2003.
- 6. Lei, Y., Li, Y. & Gao, Z. Global limit load solutions for thick-walled cylinders with circumferential cracks under combined internal pressure, axial force and bending moment Part I: Theoretical solutions.2014; *International Journal of Pressure Vessels and Piping*, 114-115, 23-40.

THANKS FOR YOUR AUDIENCE

QUESTIONS????