

Automated 3D Seismic Analysis

DR ANDREW STARKEY

PHD STUDENT: JOHN GUNTORO

CO-SUPERVISOR : DR. MARCUS CAMPBELL BANNERMAN

New Outline

- 1. Introduction
- 2. Aims and Objectives
- 3. Proposed Workflow
- 4. Kohonen SOM
- 5. Results
- 6. Conclusion and further works

Introduction

- Fundamental to the exploration of oil and gas, seismic data provides structural and geological information of the subsurface.
- Seismic attributes identify structural features, such as faults, channels and even seismic facies.
- Data multi-dimensionality affects the rate of interpreting seismic data
- The analysis and interpretation of raw seismic data is a time consuming and laborious task.
- In addition, the vast majority of software solutions available are designed for analysis of data in a 2D workflow, making 3D interpretation and visualisation difficult.

3D Seismic Data Configuration

Types of Seismic attributes

Classification of seismic attributes by (Brown, 1999)

List of available seismic attributes from Petrel

3D Curvature	AVO shear modulus contrast	GLCM	Predictability
3D Edge Enhancement	AVO strength	General depth conversion	Quadrature amplitude
AVO P-wave velocity contrast	AVO uniaxial compressional modulus contrast	Generalized Spectral Decomposition	RMS Amplitude
AVO Poisson's ratio contrast	Amplitude contrast	Genetic inversion	RMS Amplitude (iterative)
AVO S-wave impedance contrast	Ant tracking	Gradient magnitude	RMS Ratio
AVO S-wave velocity contrast	Apparent polarity	Graphic equalizer	Reflection intensity
AVO Shuey 2-term - sign(Intercept) * Gradient	Auto-correlation	Instantaneous bandwidth	Relative acoustic impedance
AVO Vp/Vs ratio contrast	Chaos	Instantaneous frequency	Remove bias
AVO attributes	Colored Inversion	Instantaneous phase	Response attribute
AVO density contrast	Consistent curvature	Instantaneous quality	Second derivative
AVO filtered polarized AB	Consistent dip	Iso-frequency component	Spectrally shaped random noise
AVO fluid angle	Correlation	Isotropic synthetic	Structural smoothing
AVO fluid factor (Gidlow)	Cosine of phase	Isotropic synthetic (grid only)	Sweetness
AVO fluid factor (Shuey)	Cross-correlation	Local flatness	Time gain
AVO fluid strength	Dip deviation	Local structural azimuth	Trace AGC
AVO gas indicator	Dip illumination	Local structural dip	Trace AGC (iterative)
AVO intercept*gradient	Directional blending	Median filter	Trace gradient
AVO linear correlation coefficient	Dominant frequency	NRMS	Variance (Edge method)
AVO polarization angle	Edge evidence	Neural net	Velocity and dix conversion
AVO polarized AB	Envelope	Original Amplitude	Wavelet convolution
AVO reflection coefficient and Poisson's ratio contrast	First derivative	Phase shift	t*Attenuation
AVO reflection coefficient difference	Frequency filter	Pore pressure prediction	

Aims and Objectives

Research Aims

The research is aimed at developing an automated seismic interpretation system, which will reduce the degree of ambiguity of seismic interpretation that also allows the user to view and modify interpretation easily in VR to speed up the process of structural, geometric and reservoir characterisation.

Proposed Workflow

Self-Organising Map (SOM)

- It is an unsupervised clustering algorithm inspired by biological neural networks, which are capable of selforganising without external supervision.
- To illustrate the SOM, if we consider the a 3D RGB colour space, where each axis has a range of 0-255. The expected outcome of the SOM is a 2D map which shows gradation of colours which represents their property of topological preservation.

SOM as transfer function

The flow process of the method proposed by Cai et al., 2017.

Results on New Zealand Dataset

Results on NZ Seismic Dataset

Variable 1 = Dip Illumination

Variable 2 = GLCM Inline

Variable 3 = GLCM Time

Variable 4 = GLCM X-Line

Variable 5 = Local Structural Dip PCA

Variable 6 = Variance

Variable 7 = Gradient Magnitude

Colour Scheme using Sammon Mapping

Raw Amplitude Data at IL 4300

SOM Classification Result at IL 4300

Raw Amplitude Data at 1060ms

-10424

SOM Classification Result at 1060ms

Results on F3 Netherland Seismic Dataset

Results on Netherland Dataset

Var 1 = Dip Illumination Var 2 = GLCM Inline Var 3 = GLCM Time Var 4 = GLCM X-Line Var 5 = Local Structural Dip PCA Var 6 = Variance Var 7 = Gradient Magnitude

Raw Amplitude Data at IL 250

SOM Classification Result at IL 250

Raw Amplitude Data at 968ms

SOM Classification Result at 968ms

Visualisation in VR

Visualisation in VR

Conclusions

- The rapidly growing field of seismic attributes makes it difficult for effective and efficient interpretation.
- Therefore, there is a significant benefit in having an automated 3D seismic interpretation pipeline, which are capable to elucidate the relevant geological features, based on the given seismic attributes.
- A preliminary test of using SOM shows a promising potential for the application of transfer function.
- This gives the capability of viewing the underlying seismic data in Virtual Reality
- Further works will focus more on the automatic feature selection scheme and VR user interface.