

4D RMS difference before (top) & after (bottom) filtering - Time-slice display

Seismic 2019

4D monitoring enhancement with LostCor filtering

A case study

15/05/2019

Matthieu Botz

matthieu.botz@estimages.com

4D monitoring enhancement with LostCor filtering

Case study highlights

- 2 full stack seismic volumes over an area of ~600km²: base and monitor surveys acquired with an 8 years interval
- 4 regional interpretations
- other geological input: located cemented zones, coherency attribute $_{\scriptscriptstyle NW}$

RAW full stack baseline

(zoom) Horizon 1 Horizon 2 Horizon 3

A **short-scale isotropic artefact** is identified on both full stack volumes. It accounts for ~20% of the total spatial variability of the data sets.

SE

4D monitoring enhancement with LostCor filtering LostCor filtering

4D monitoring enhancement with LostCor filtering LostCor filtering

4D monitoring enhancement with LostCor filtering 4D difference: Base - Monitor

Thanks to **local parameters (M-GS®)**, filtering with **multi-variable approach**, parallel to reservoir dip, has attenuated steeply dipping events whilst maintaining the signal strength from the reservoir.

NW SE 600 400 200msTWT 200msTWT 500 500 500 500 500 500 500

Cross-line vertical section

4D difference (zoom)

A **co-variogram model** is used to filter out the noise components of the base and monitor simultaneously. As a result, reflectors parallel to the reservoir are strengthened whereas reflectors with steeper dip are attenuated.

10000

4D monitoring enhancement with LostCor filtering 4D difference: Base - Monitor

Thanks to **local parameters (M-GS®)**, filtering with **multi-variable approach**, parallel to reservoir dip, has attenuated steeply dipping events whilst maintaining the signal strength from the reservoir.

Cross-line vertical section

4D difference (zoom)

A **co-variogram model** is used to filter out the noise components of the base and monitor simultaneously. As a result, reflectors parallel to the reservoir are strengthened whereas reflectors with steeper dip are attenuated.

10000

4D monitoring enhancement with LostCor filtering 4D observations and conclusions

Co-filtering the base and monitor with the LostCor model enables **easier interpretation of 4D difference attributes**: all 4D QC properties are improved and the amplitude difference shows a more laterally consistent response around producing wells.

Vertical resolution is not affected (no change in frequency spectrum).

IL#

4D RMS difference time-slice

RMS attribute computed inside a 400ms time-window - difference Base - Monitor

Combination of **multi-variable geostatistics** and **local parameters** ensures the **optimal removal of all types of noise.**

4D monitoring enhancement with LostCor filtering 4D observations and conclusions

Co-filtering the base and monitor with the LostCor model enables **easier interpretation of 4D difference attributes**: all 4D QC properties are improved and the amplitude difference shows a more laterally consistent response around producing wells.

Vertical resolution is not affected (no change in frequency spectrum).

4D RMS difference time-slice

RMS attribute computed inside a 400ms time-window - difference Base - Monitor

Combination of **multi-variable geostatistics** and **local parameters** ensures the **optimal removal of all types of noise.**

