

Testing and Verification of Thermite Barrier Technology in a UKCS Well Abandonment Scenario - A Case Study

Willem Boon von Ochssee

Principal Well Engineer, Spirit Energy

The P&A Challenge & Thermite

Well abandonments - the future is now Population of older wells increasing worldwide Increasing costs compared to previous estimates ABEX is a concern for operators and governments Low commodity price environment

Why & How did Spirit Energy got involved with Thermite

- Thermite was a JIP by Interwell P&A, AkerBP and Equinor
- Field trials required but no wells were available.
- Spirit Energy offered to find suitable wells in Canada

The Challenge

- Introduction of Technology needs a new approach
- Innovative application of "old" technology with "revolutionary" approach
- Engaged with OGA and OGTC to develop the opportunity

Thermite Reaction

<u>History</u>

Hans Goldschmidt inventor of the Goldschmidt reaction in 1893 Aluminothermic Process patent no. 96317 in 1895 and THERMIT® Registrated Trademark in 1900

Chemical reaction

Aluminium (AI) reduces the oxide from iron oxide (Fe2O3), to form Aluminium Oxide (Al2O3) and pure iron (Fe) Reaction energy ~4000 kJ/kg Reaction temperature ~2500 °C

What is an Exothermic Reaction;

Any mixture of two or more chemicals that produces heat when activated.

Why <u>thermite</u> is preferable; Self sustained oxygen source (Iron Oxide) High energy potential in both materials Self sustained reaction after activation

Original thermite reaction Fe2O3 + 2 Al \rightarrow 2 Fe + Al2O3 + Δ H Hematite, rust, red color

Thermite Plug Deployment

Thermite's original P&A Cartoon

-Cement A wireline conveyed tool containing heat generating material is lowered into well and ignited.

> A column of molten magma is created which will melt all wellbore elements and solidify into a permanent barrier in hours.

Thermite Technology aims to restore the caprock by forming a high integrity permanent barrier.

2019 update

Thermite barrier deployment video

Thermite Deployment Experience

- World's first field trial in 2016 in Whitehorse in Alberta Canada, followed by another in Benjamin.
- First European trial in England (Caythorpe) in May 2018.
- All three wells onshore with thermite set in 7 inch casing without tubing in the hole.
- Imperial, Shell, Eni, West Lake, Canlin, CNR have also carried out onshore trials
- First Offshore Deployment on Spirit Energy's Audrey platform in the North Sea
- Extensive deployment experience (18 trials in total). Focus now on 'verification like cement'.....

Challenging process ahead

- Resistance to new technology
- Qualify 'new' material
- No access to wells for field trials
- Lack of funding for technology development
- Competing with cement
- Establish Common Industry Approach
- A new education process

Material Qualification * Technology Application **Barrier Verification**

Thermite Pre/Post Deployment Barrier Verification

Thermite Barrier Verification

establishing what 'good' looks like

Baseline phase

- Tubing pressure tests (pre-work)
- Casing integrity survey (wireline)
 - Ultra-Sound cement bond mapping
 - Passive Spectral Acoustic and High Precision temperature logging
 - Production logging using mechanical and heat exchange flowmeters

Deployment phase

- Tool ignition signature (pressure wave)
- Positive pressure test (deferred as heatshield packer is used)

Post-Deployment phase

- Positive pressure test (drop off test = 122 bar static dP)
- Extended inflow test
- Thermite Barrier inspection
 - Camera survey
 - Ultra-Sound cement bond mapping
 - Passive Spectral Acoustic and High Precision temperature logging
 - Production logging using mechanical flowmeters

Deployment verification - Ignition Signature

Deployment verification - Cement Bond

Cement bond & Ultra sound survey:

- Well bounded, heterogeneous, cement around the entire annulus with non-connected liquid pockets
- Well immediately above the plug un-affected by Thermite reaction

Deployment verification - Reservoir Isolation

Baseline Chorus Survey Conclusion:

- No flow-related activity observed on Chorus (SNL)
- No flow-related activity observed on High Precision Temperature
- No flow-related activity observed on Indigo PLT log

Deployment verification - Thermal modelling

Failure models comparison

Thermite model

Thermite Post-Deployment - Downhole verification

Parameter	Value							
Temperature rating	0 to 150∘C (32 to 302°F)							
Pressure rating	100 MPa (14 500 psi)							
H ₂ S resistance	<30%							
Frequency range	8-60 000 Hz							
Dynamic range	100 dB							
Recording time (mem. mode)	70h							
Tool OD	38/42mm (1.5 / 1 11/16")							
Length	80cm (2.6')							
Weight	7 kg (15.4 pounds)							

Noise (Chorus) Pattern Interpretation Library

16 Thermite Barrier Post Deployment Verification

Post Well Schematics - Examples

Caythorpe CA02 Thermite Trial

Caythorpe 2 Thermite Trial – BDF 28

Key Objectives of Onshore Thermite Trial

- First UK / European deployment of the Thermite plug, as part of the phased technology development programme (following the 2017 trials in Canada).
- Engage with EA, OGA and HSE to obtain regulatory consent to use the equipment onshore
- 1st trial for setting Thermite plug in Halite formation, common cap rock in UKCS SNS
- Establish common application method and verification programme for Thermite P&A technology
- Share the results with the Thermite Collaboration Forum to accelerate adoption of new P&A technology in the UKCS

Post Well Schematics - Planned vs Actual

Well Re-entry & Preliminary results

- Positive pressure test
- Displaced Well to Nitrogen
- Extended inflow test
- 14 psi / hr PBU rate
- (equivalent of 5 SCF/min leak)

Audrey B1z Thermite Trial

Audrey B1z Thermite Trial

Key Objectives of Offshore Trial (Top 5)

- First (global) offshore deployment of the Thermite plug, as part of the phased technology development programme.
- Engage with OGA, OPRED/BEIS and HSE to obtain regulatory consent to use the equipment offshore
- 2nd trial for setting Thermite plug in Halite formation, at lower angle compared with CA-02 (common SNS Caprock)
- Share the results with the Thermite Collaboration Forum to accelerate adoption of new P&A technology in the UKCS
- Progress Industry Common Verification road map for new P&A technology and barrier material.

Well Schematics - Planned P&A

Interim Well Status

Suspension

- (100bbl/hr losses observed prior to setting Heatshield packer assembly)
- BVS w/ gauges & micro-smart valves set below Thermite plug
- Suspend B1z with deepset Interwell plug above Thermite, and shallow set Archer plug as 2nd barrier.

Next

- Verify integrity of Thermite plug with BVS receiver and repeat TGT SNL log.
- Continue with 'Standard' abandonment programme

Well Re-entry & Preliminary results

Re-entry

- Moved back to B1z & pulled suspension plugs
- Monitored wells for statics losses 6 bbl/hr
- Decision made to curtail verification programme (exit strategy)
- Cancelled TGT Spectral Noise Log
- Cancelled Run BVS receiver log & pressure test
- Continued with P&A programme

Preliminary results

- Thermite successfully permitted / shipped offshore
- Successfully deployed without incident
- Losses at 100 bbl/hr prior to thermite plug
- Reduced to 6 bbl/hr after setting thermite plug
- Unable to carry out pressure test
- Washup & review with Interwell ongoing

Thank you

Willem Boon von Ochssee Principal Well Engineer

willem.boon@spirit-energy.com +44 (0)1224 411 691 Micro-annulus cell - test with gas

"Good" cement induced micro-annulus – test with water

		ST	60 E LFP 637 INSIDE		ST	LFP 637 INSIDE	Bar	ST	100 Ba		ST	120 B LFP 637 INSIDE		ST	LFP 637 INSIDE	
DEPTH	WELL SKETCH		66 80 dB SPI	SNL 637 IN SIDE 64 80 dB SPL 0.1 kHz 58.6			SNL 637 INSIDE 64 80 dB SPL		LFP 637 INSIDE 66 80 dB SPL 6	SNL 637 INSIDE		66 80 dB SPL	SNL 637 INSIDE		66 66 80 dB SPL	SNL 637 INSIDE 64 80 dB SPL
U	UNLIGHT		0.01 kHz 4.9	0.1 kHz 58.6		0.01 kHz 4.5	0.1 kHz 58.6		0.01 kHz 4.9 0.	1 kHz 58.6		0.01 kHz 4.9 0	.1 kHz 58.6		0.01 kHz 4.9	0.1 kHz 58.6
	9 ⁵ / ₈ "															

60bar, 1.3mL/min 80bar, 1.7mL/min 100bar, 3.6mL/min 120bar, 9.7mL/min 140bar, 31 mL/min

194075 • Barrier Verification during Plug and Abandonment Using Spectral Noise Logging Technology, Reference Cells Yard Test • Dave Gardner