Application of Flow Modelling to a Risk-based Approach to Well Decommissioning

Caroline Johnson, Morteza Haghighat Sefat, David Davies
Institute of Petroleum Engineering
Risk-based approach to Well P&A Design

- UK well P&A expenditure forecast over the next decade: £ 7.5 billion*
- Urgent business need for a risk-based approach → fit for purpose, well specific design.
- P&A system long-term performance modelling required to assess risk and support cost-saving decision making process

*2018 Decommissioning Insight, Oil & Gas UK
Possible Modelling Techniques

<table>
<thead>
<tr>
<th></th>
<th>Upscaled Steady State</th>
<th>Transient Wellbore Modelling</th>
<th>Numerical Grid-Based Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Adv.</td>
<td>Simple to implement</td>
<td>Captures (early) transient</td>
<td>Accurate flow through cement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>effects</td>
<td>(i.e. porous medium)</td>
</tr>
<tr>
<td>Key Disadv.</td>
<td>No time dependence</td>
<td>Approximation: cement</td>
<td>Performance over time (1000s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>modelled as chokes</td>
<td>of years)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unsuitable flow correlations</td>
<td>Approximation: annular spaces</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Computationally expensive</td>
<td>modelled as very high perm &</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>porosity medium.</td>
</tr>
</tbody>
</table>

\[Q = \left(\frac{KA}{\mu L} \right) (\Delta P - \rho g L \cos \theta) \]

Developed Grid-Based Framework – Sample Application

Using:
- In-house pre/post processor
- Commercial simulator as back-end engine.

Scenario:
- Open hole completion
- Reservoir: Gas, Constant $P = 5000$ psia
- Wellbore: Water-saturated, intact cement $k = 1 \mu D$

Results consistent with expected trends
Validation of absolute flowrates using physical experiments would be ideal
Key parameter: effective permeability \((k_{\text{eff}})\)

Effective Permeability

\[k_{\text{eff}} = k \cdot k_r \] (\(k = \text{absolute permeability}, k_r = \text{relative permeability}\))

Multiphase flow in porous medium

- **Model application:** identify most important input parameters.
Conclusions

- Numerical grid-based finite difference modelling works!
- The key input: k_{eff} of cement, driven primarily by the absolute k.
- To improve reliability (especially for probabilistic analysis)
 - more data and a deeper understanding of flow properties of cement with different degrees of isolation required.
- All P&A scenarios can be modelled using our developed framework,
 - including through-tubing P&A, which is of particular interest from a cost-saving perspective.

More data required for reliable probabilistic analysis
Acknowledgements

This work is sponsored by the Oil and Gas Technology Centre and supported by the following North Sea operators.

Software license provided by

Email: Dr. Morteza Haghighat Sefat (m.h.sefat@hw.ac.uk)