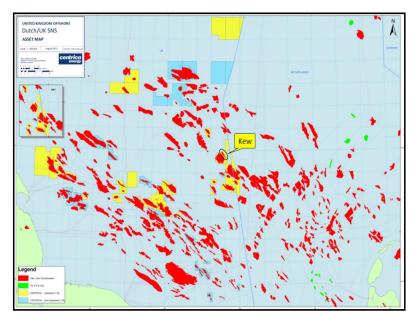
SPE INWELL MONITORING & SURVEILLANCE SEMINAR

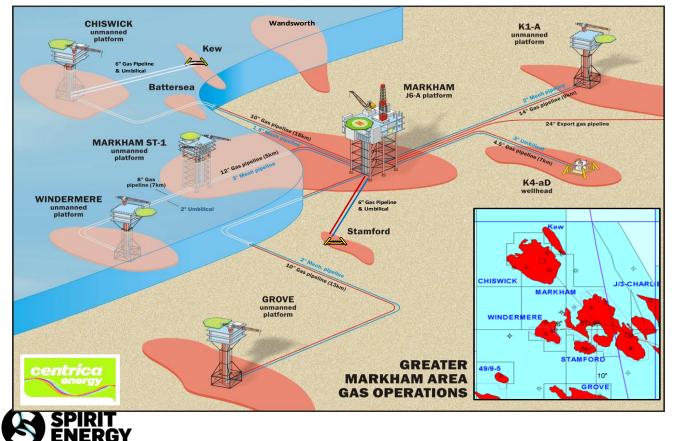
FRACTURE CHEMICAL TRACERS IN THE CHISWICK FIELD

M. LANGFORD - SPIRIT ENERGY

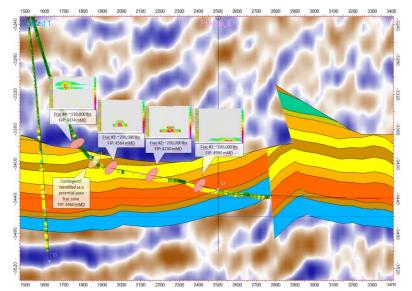
October 2019


Outline

- The challenges of stranded gas fields
- Kew/Chiswick field history and overview
- The challenges of developing Kew/Chiswick
- Development strategy and execution of chemical tracers
- Conclusions


Stranded Gas Fields in the Southern North Sea

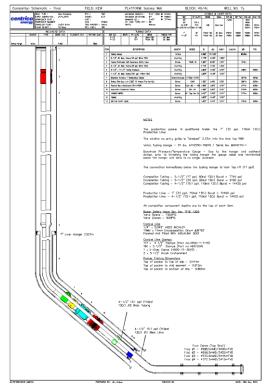
- Over 100 gas accumulations can be found in the SNS and are well documented within SPE literature (Coghlan et al. 2013; Schulte et al. 2012).
- Tight reservoirs, distant infrastructure, small volumes, and anomalous gas qualities are amongst the main reasons why these resources have not yet been developed.
- Difficult for subsea, interventions on PLT in horizontal wells



Infrastructure Layout

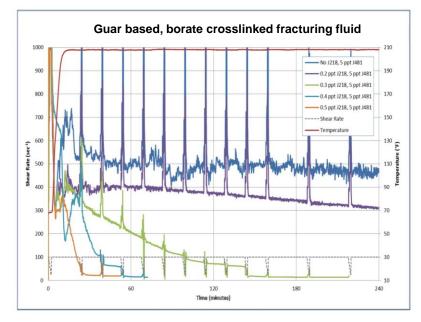
Kew Development Plan

- Sub-horizontal well drilled in order to target all the sand bodies
- One hydraulic fracture planned in each of the target sands plus crossing into additional sands
- The combination of horizontal drilling and hydraulic fracturing were found to be the optimum development option for KEW reservoir.
- Chemical tracers pumped within the frac fluids



Kew Drilling and Completion

- Hydraulic fracturing performed through the final completion/production string
- Design tried and tested within our portfolio
- Increased weight of tubulars to cater for all load scenarios
 - tri-axial, burst, collapse, tension, compression
- Real time DHPG key to understand fracture performance
 - Decisions can be made on the fly with actual BH gauge data
 - no need to extrapolate from surface readouts.
- Monobore from 5-1/2" x-over all the way to TD for ease of CT


****PLANNED TO PUMP CHEMICAL FRAC TRACERS FOR CLEAN-UP EFFICIENCY AND RESERVOIR UNDERSTANDING****

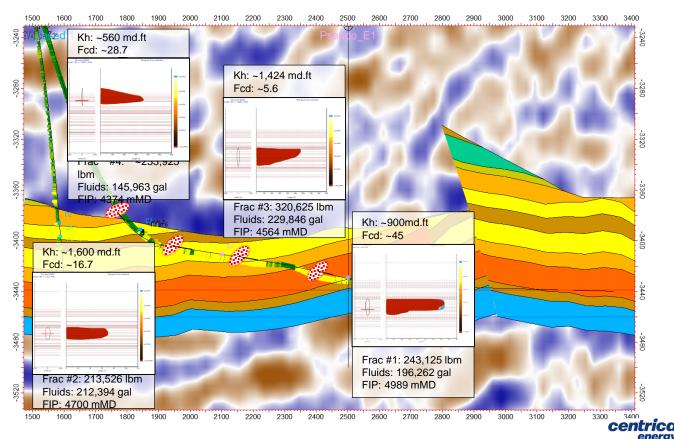
Kew Hydraulic Fracturing Planning

- A borate crosslinked fresh water fluid was used to initiate the fractures and transport the proppant.
 - A dedicated stimulation vessel was used for the execution phase as it allows higher flexibility in treatment execution.
- Frac tracers fluids pumped within the frac fluid itself (ppm concentrations).



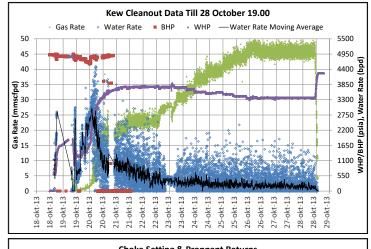
٠

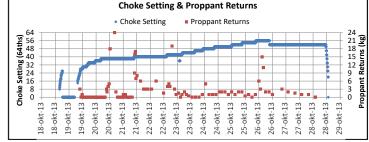
Kew Hydraulic Fracturing Execution


Kew Hydraulic Fracturing Execution

- Four hydraulic fracturing stages were successfully executed
- Over a million pounds of proppant pumped

PARAMETER	Z 1	Z2	Z3	Z4	All Zones			
PARAMETER	Well: 49/4c-7Y							
Main job execution date	20th Sept	25 th Sept	6 th Oct	8 th Oct				
Total Slurry (bbl), Data & MainFRAC	4,898.5	5,234.0	5,773.0	3608.0	19,514.0			
Total Clean (gal), Data & MainFRAC	196,262	212,394	229,846	145,963	784,465			
Total 100-Mesh sand Data & MainFRAC (Ibm)	5,270	11,701	6,418	17,652	41,041			
Total 16/30 ISP MainFRAC (Ibm)	243,125	213,526	320,625	233,925	1,011,201			
Max Rate MainFRAC (BPM)	35.5	40.0	40.5	36.0	-			
Ave Surface Pressure MainFRAC (psi)	5,270	3,988	5,111	5685	-			
Max. Surface Pressure MainFRAC (psi)	7,104	8,010	7,061	8177	-			
Ave BH Pressure (psi) – DataFRAC only	9,162	5,229	5,280	2021	-			
Max. BH Pressure (psi) – DataFRAC only	3,695	12,074	10,076	11,541	-			

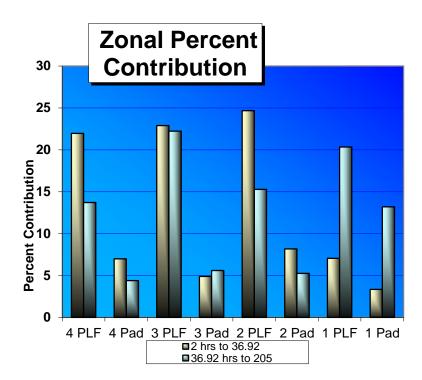

Kew Horizontal Well Fracturing Execution Results



_

Kew Post Frac Clean-up

- Choke size 52/64" fixed.
- FWHP 3370 psi.
- Gas rate ~45 mmscfpd.
- Condensate rate 420 bbls/d.
- Water rate 179 bbls/d.
- Proppant rate trace. 1kg over the previous 12 hours.
- BSW 38%.
- Cumulative condensate 2470 bbls.
- Cumulative water 5325 bbls.
- Cumulative proppant 290kg.
- PVT sampling complete.


Tracer Objectives

- Be in a chemical form that will move with the fracture fluids, without being adsorbed onto the formation or otherwise lost through chemical, thermal or biological instability problems.
- Be able to be reliably detected at ultra-low levels.
- Be uniquely distinguishable from all other tracers used in the field.
- Be produced at concentrations which will cause no damage to terrestrial or sea life, and not adversely affect the atmosphere or biosphere.
- Be available in sufficient quantities at a reasonable cost.

Kew Evaluation of Chemical Tracers

- Chemical tracers were used to evaluate the clean-out efficiency
- For each fracturing stage two tracers were used, one in the pad and one in the proppant stages
- All 8 tracers used (ppm) were North Sea compliant and do not affect the fracturing fluids properties
- The tracers showed good indication of all the fractures flowing

				Name and Charles Free Transformation and							í			
				Normalized Chemical Frac Tracer Concentration, ppb										
				Traced Segment	4 PLF	4 Pad	3 PLF	3 Pad	2 PLF	2 Pad	1 PLF	1 Pad		
				Stim Date	10/8/13	10/8/13	10/5/13	10/5/13	9/25/13	9/25/13	9/21/13	9/21/13	Totals	Avgs
				Traced Fluid vol (Gal)	56,255	29,781	80,278	50,108	60,906	60,103	60,443	45,693	443,567	55,446
		FPE	8.3	CFT Injected (g)	160	85	228	142	175	173	173	130	1,266	158
				% Injected	12.6%	6.7%	18.0%	11.2%	13.8%	13.7%	13.7%	10.3%		
		Cum		a 1 m									CFT Total	Cale
Key		Vol*	Sample Date	Sample Type	CFT 1500	CFT 2000	CFT 1200	CFT 1600	CFT 1100	CFT 1400	CFT 1000	CFT 1700	ppb	Chlorides Total
>200	1	106	10/19/13 9:30	Water (Produced)	1.6	1.2	0.0	0.0	0.0	0.0	0.0	0.0	2.8	3,320
50 to 200	2	135	10/19/13 10:30	Water (Produced)	2.6	1.7	0.0	0.0	0.0	0.0	0.0	0.0	4.2	5,036
00 to 150	3	218	10/19/13 11:30	Water (Produced)	2.4	1.6	0.0	0.0	0.0	0.0	0.0	0.0	4.0	4,999
70 to 100	4	245	10/19/13 12:30	Water (Produced)	106.0	48.2	0.4	0.0	0.0	0.0	0.0	0.0	154.6	95,494
50 to 70	5	272	10/19/13 13:30	Water (Produced)	88.0	76.5	8.0	2.9	1.8	0.7	0.0	0.0	177.9	67,113
35 to 50	6	303	10/19/13 14:30	Water (Produced)	39.5	35.3	14.1	4.8	8.0	2.4	0.0	0.0	104.0	35,909
25 to 35	7	330	10/19/13 15:30	Water (Produced)	36.6	29.2	14.3	4.4	9.3	2.9	0.0	0.0	96.7	35,139
17 to 25	8	396	10/19/13 16:30	Water (Produced)	33.1	22.6	12.1	3.9	13.4	4.1	0.0	0.0	89.1	32,613
12 to 17	9	463	10/19/13 17:30	Water (Produced)	31.4	20.2	13.6	4.1	13.3	4.3	0.3	0.0	87.0	30,529
8 to 12	10	535	10/19/13 18:30	Water (Produced)	30.5	19.4	15.1	4.6	13.2	4.1	0.5	0.3	87.7	30,690
5 to 8	11	603	10/19/13 19:30	Water (Produced)	27.1	16.6	17.3	5.2	14.4	4.8	1.2	0.5	87.1	26,146
3 to 5	12	667	10/19/13 20:30	Water (Produced)	24.5	14.8	17.4	5.0	14.0	4.6	1.8	1.0	83.1	24,406
2 to 3	13	953	10/19/13 23:30	Water (Produced)	23.0	13.6	20.0	6.7	15.6	5.1	4.4	2.6	90.9	23,134
1 to 2	14	1292	10/20/13 2:30	Water (Produced)	12.8	7.7	12.5	4.2	40.7	13.9	3.9	2.4	98.0	23,680
0.05 to 1	15	1598	10/20/13 5:30	Water (Produced)	19.5	11.5	17.4	6.3	30.7	10.7	6.3	4.1	106.6	24,466
	16	1829	10/20/13 8:30	Water (Produced)	22.7	12.9	21.1	6.7	28.4	9.4	9.2	5.9	116.5	24,486
	17	1995	10/20/13 11:30	Water (Produced)	24.1	13.7	22.2	7.7	28.6	9.7	12.4	7.8	126.3	24,815
	18	2114	10/20/13 14:30	Water (Produced)	24.4	13.4	20.6	8.0	27.2	9.4	13.8	8.7	125.5	26,652
	19	2465	10/20/13 17:30	Water (Produced)	25.9	14.1	23.0	8.1	29.8	9.8	15.0	9.4	135.1	26,949
	20	2555	10/20/13 20:25	Water (Produced)	26.3	14.5	23.4	8.9	29.5	10.1	17.6	11.3	141.5	30,080
	21	2858	10/21/13 2:30	Water (Produced)	24.2	13.3	27.1	9.3	33.8	11.5	19.3	12.7	151.1	26,766
	22	3060	10/21/13 8:30	Water (Produced)	23.0	13.0	24.8	10.0	30.3	10.6	22.8	15.2	149.6	30,164
	23	3296	10/21/13 14:30	Water (Produced)	21.6	12.5	24.3	9.5	28.5	9.7	24.5	16.6	147.2	31,083
	24	3410	10/21/13 20:30	Water (Produced)	21.6	12.7	25.4	9.6	27.8	9.8	27.2	18.8	152.8	32,524
	25	3546	10/22/13 2:30	Water (Produced)	20.4	12.1	25.1	9.2	25.7	9.1	28.3	20.1	150.0	32,153
	26	3647	10/22/13 8:30	Water (Produced)	20.5	12.5	25.8	9.4	23.5	8.4	31.2	22.6	153.9	31,576
	27 28	3735 3872	10/22/13 14:30	Water (Produced)	20.0 16.7	11.9 10.5	25.1 22.0	9.7 7.7	21.9 20.7	7.9 7.6	33.2 28.3	24.3 21.8	153.9 135.2	33,614 30,443
	28 29	4030	10/22/13 20:30 10/23/13 8:30	Water (Produced) Water (Produced)	19.5	10.5	22.0	8.7	20.7	7.8	31.5	21.8	135.2	35,723
	30	4050	10/23/13 20:30	Water (Produced)	22.0	12.1	24.4	9.9	18.4	6.5	35.7	30.0	148.9	36,080
	31	4113	10/23/13 20:30	Water (Produced)	26.5	15.7	30.7	11.6	21.4	7.6	43.0	38.1	194.5	35,514
	32	4308	10/24/13 20:30	Water (Produced)	20.3	12.7	24.7	10.6	19.0	6.9	41.6	36.5	172.5	35,204
	33	4369	10/25/13 8:30	Water (Produced)	21.3	13.0	23.7	9.9	17.1	5.9	35.9	34.0	160.8	36,990
	34	4424	10/25/13 20:30	Water (Produced)	21.4	13.5	23.4	10.4	15.8	5.8	36.5	35.8	162.6	38,037
	35	4965	10/26/13 20:30	Water (Produced)	21.7	14.4	23.5	11.3	14.9	5.2	35.8	37.0	163.7	39,363
	36	5242	10/27/13 20:30	Water (Produced)	20.6	13.3	23.1	10.7	14.0	4.8	32.2	34.8	153.6	37,796
		614		Avg ppb	26.2	16.5	18.6	6.9	18.6	6.4	16.5	13.3	123.1	31,630
		Avg BPD		% total ppb from Stage	21.3%	13.4%	15.1%	5.6%	15.2%	5.2%	13.4%	10.8%	100.0%	
			% total ppb @ last sample	13.4%	8.6%	15.0%	7.0%	9.1%	3.2%	21.0%	22.7%	100.0%		
				Mass Balance Recov'd (g)	18.7	6.0	25.0	5.9	21.1	7.1	17.3	10.6	111.8	
			% of Total Recovery	16.7%	5.4%	22.4%	5.3%	18.9%	6.4%	15.4%	9.5%	100.0%		
			SLR	10.0	8.0	10.0	4.7	10.0	4.7	10.0	9.3	8.3		
		SPIR	No Flow Zones	0	0.0	0	Deduct	1010		1010	5.5	0.0	I	
			Z	Heel/Toe Ratio	1.4		0	Deduct						
	< ~		ENE	14 Day flow decline	N/A		0	Deduct						
				Traced Fluid Recovered	8.8%									

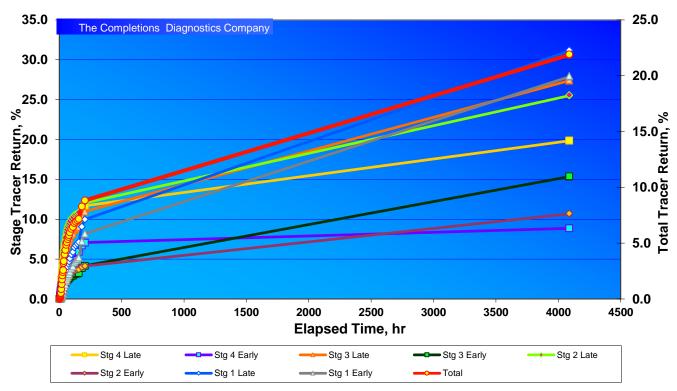
Centrica Energy KEW 49/4c-7/72 KY Normalized Data Table

DIAGNOSTIC METRICS

Flow Profile Effectiveness (FPE): A total well score (0-10) based on the weighted average SLR minus deductions for no flow zones, heel/toe ratios greater than 2 and flow decline greater than 50%.

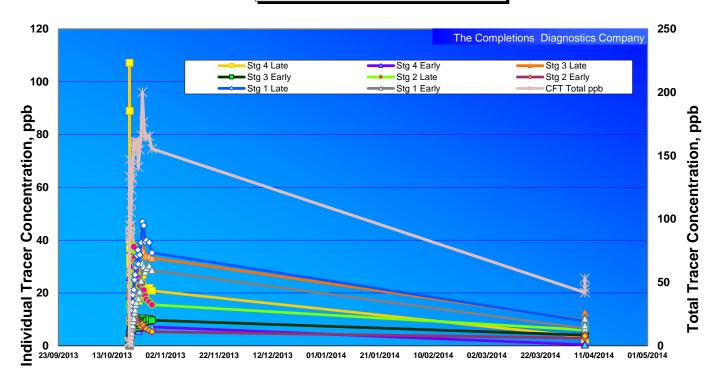
Segment Load Recovery (SLR): A score of 0-10 given to each traced segment or stage based on the percentage of total recovered grams divided by the percentage of tracer injected.

No Flow Zones: Any stage or segment which tracer is not detected.


Heel/Toe Ratio: The average concentration of the heel stage or segment divided by average concentration of the toe stage or segment. Ratios greater than two suggest an imbalance in the flow profile.

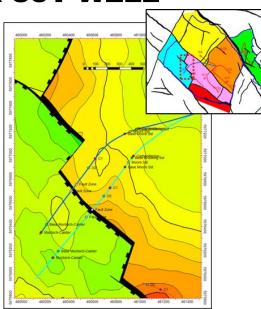
Evaluation of Chemical Tracers (6+ MONTHS)

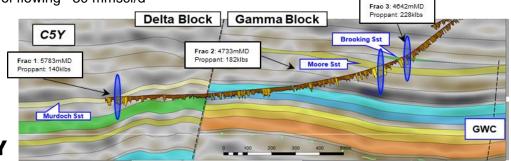
- Chemical tracers again sampled 6+ months from initial sampling
- 3 samples taken and sent for analysis
- All three are showing tracer detection, indicating that frac fluids are still returning from the well
- The tracers showed good indication of all the fractures flowing



Tracer Return vs Elapsed Flowback Time

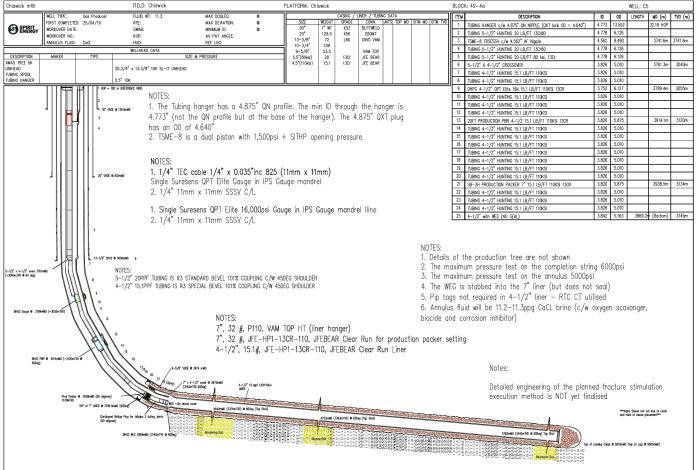
Tracer Concentration vs Time

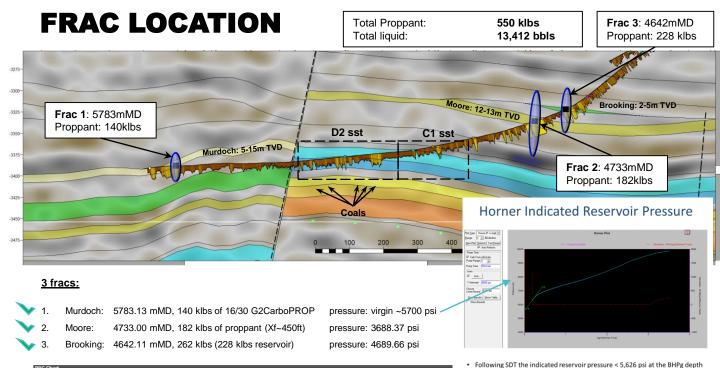

CASE STUDY #2 CHISWICK C5Y WELL

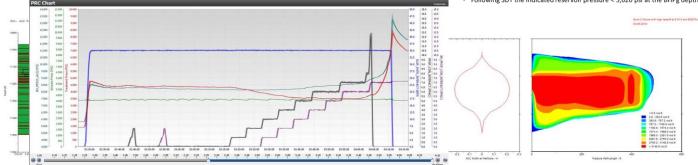

Well Objectives

- 5th production well on Chiswick Gas Field (Carboniferous reservoir)
- Develop Gamma West (pink) and Delta (blue) ٠ fault blocks
- Acquire log and pressure data
- Reliable completion of up to 6 hydraulic ٠ fractures (plug & perf)

Results

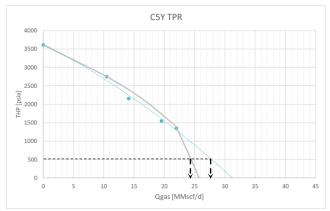

- 3 fracs placed (1 in Delta and 2 in Gamma)
- 550,000 lbs proppant pumped, 13,400bbls ٠ pumped
- Well capable of flowing ~30 mmscf/d ٠

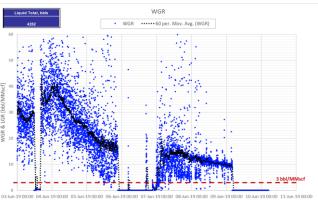




18

C5 WELL COMPLETION

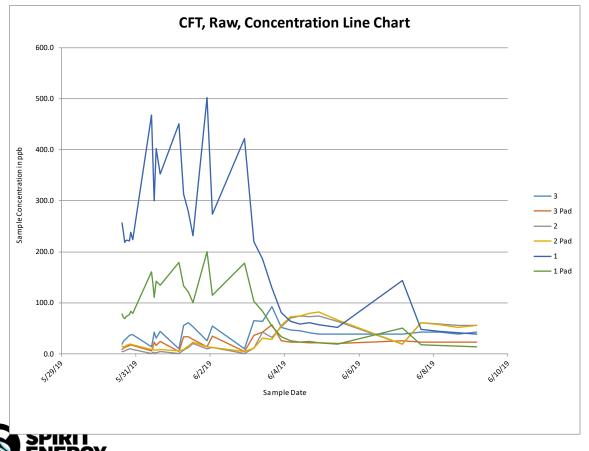




C5Y CLEANOUT SUMMARY

- After 10 days of clean-up the well was switched to 60/64" fixed choke on 09th June 00:00 am.
- After flowing for 4 hours the well was SI on 09th of June at 04:00 am
- Flowing BHP was stable and little proppant returns were seen, WGR was around 9-10 bbls/MMscf
- A couple of months of production is required to determine connected volume and EUR

C5Y TRACER ANALYSIS


Key 0.1 117.2 743.2

CFT Contributions (Data in ppb)

Traced Segment	3	3 Pad	2	2 Pad	1	1 Pad		
Perforations (ft)	15228-	15228-	15528-	15528-	18974-	18974-		
Ferrorations (it)	15252	15252	15535	15535	18993	18993		
Stim Date	5/18/19	5/18/19	5/14/19	5/14/19	5/12/19	5/12/19		
Traced Fluid (gal)	65,160	70,000	54,952	75,000	50,059	14,000		
Prop (lbs)	262,403	0	182,300	0	146,392	0		
Tracer Injected (g)	188	202	158	216	144	40		
% Injected	20%	21%	17%	23%	15%	4%		
	CFT	CFT	CFT	CFT	CFT	CFT		
Sample Date	1900	1600	1400	1300	1100	1000		
5/30/19 15:00	15.8	6.2	3.7	10.8	281.7	302.8		
5/30/19 16:00	20.3	8.5	4.4	10.3	261.5	281.4		
5/30/19 17:00	22.3	9.3	5.6	10.3	240.1	269.4		
5/30/19 18:00	24.6	10.4	7.1	11.8	243.4	282.1		
5/30/19 19:00	27.6	11.6	8.6	13.1	243.3	294.3		
5/30/19 20:00	29.8	12.2	9.2	13.4	242.4	302.2		
5/30/19 21:00	31.7	13.3	9.1	13.4	261.4	328.0		
5/30/19 22:00	31.5	13.1	8.9	12.5	245.2	311.8		
5/31/19 10:00	11.4	4.3	0.6	6.2	513.4	628.5		
5/31/19 11:00	22.2	9.4	2.4	6.8	419.8	541.7		
5/31/19 12:00	36.2	17.6	1.8	5.1	329.4	434.9		
5/31/19 13:00	25.3	12.2	1.9	5.2	441.3	555.4		
5/31/19 16:00	36.9	18.8	3.8	5.8	386.8	527.3		
6/1/19 4:00	7.8	2.9	0.3	3.8	493.8	702.0		
6/1/19 7:00	47.2	26.0	7.1	5.6	343.4	521.6		
6/1/19 10:00	51.2	25.6	11.7	10.7	305.0	475.3		
6/1/19 13:00	44.8	22.4	19.6	16.4	254.3	393.2		
6/1/19 22:00	21.7	10.4	9.5	9.8	550.6	782.3		
6/2/19 1:30	45.7	27.2	12.7	8.9	299.5	451.1		
6/2/19 22:00	7.6	3.0	0.6	3.4	462.6	695.8		
6/3/19 4:00	55.0	28.4	11.1	8.4	241.3	405.0		
6/3/19 10:00	53.4	32.9	42.6	22.3	204.1	325.4		
6/3/19 16:00	77.5	44.8	32.0	20.7	141.8	211.0		
6/3/19 22:00	43.0	19.4	52.9	40.8	88.1	131.2		
6/4/19 4:00	39.3	17.6	69.6	53.0	69.1	98.9		
6/4/19 10:00	37.6	17.4	73.5	54.3	64.5	90.5		
6/4/19 16:00	34.3	17.0	73.2	57.7	66.7	94.3		
6/4/19 22:00	32.2	16.5	74.5	59.8	62.3	86.1		
6/5/19 10:00	32.8	16.0	63.8	48.0	56.2	72.8		
6/7/19 4:00	32.5	20.1	18.7	13.4	157.4	199.4		
6/7/19 16:00	36.0	17.9	60.8	44.2	51.8	68.5		
6/8/19 4:00	35.3	18.0	58.5	42.1	47.6	61.4		
6/8/19 16:00	32.9	17.6	55.9	38.2	45.4	58.1		
6/9/19 4:00	36.1	18.0	55.0	40.2	42.7	54.8		

C5 TRACER ANALYSIS FLOW PROFILE

Conclusions

- Horizontal drilling and hydraulic fracturing helped develop a reservoir that was initially considered below the economic limit
- Using chemical tracers provided a qualitative view of fracture flowback efficiency near and medium term
- Fracs still flowing 6+ months down the line as indicated by additional sampling from the platform
- Good understanding for reservoir management. Long term understanding of flow contribution by regular sampling possible.

