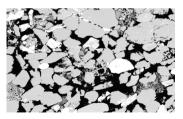
Applying Digital Rock Physics in Reservoir Engineering

Gilbert Scott


DEVEX September 2020

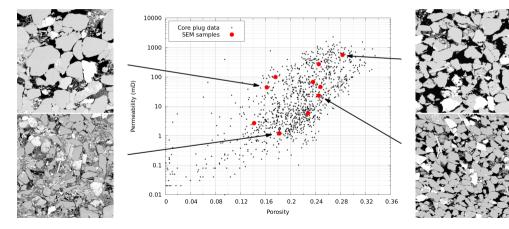
Digital Rock Physics

• Pore scale imaging and modelling => rock properties

X-ray µCT

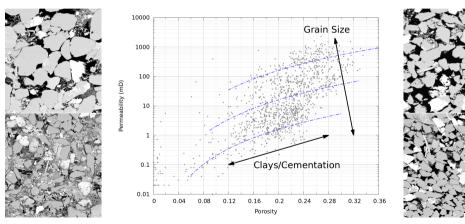
SEM

- Porosity
- Permeability
- Relative permeability
- Capillary pressure

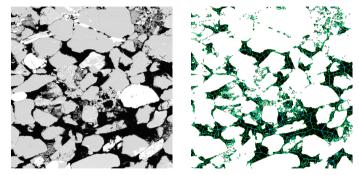

SEM vs µCT

	SEM	μCΤ
	2D	3D
Resolution	0.1 µm	1 µm
Image Size	30,000 ² pixels	1000 ³ voxels
Field of View	9 mm ²	1 mm ³
Signal/Noise Ratio	High	Low
Acquisition Time	3 hours	24 hours
Cost Factor	1	10

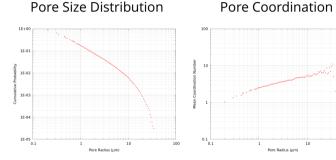
- SEM images are significantly better quality, higher resolution and cheaper than μ CT but only 2D


SEM Imaging

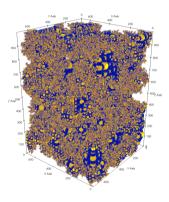
• North Sea Jurassic sandstone oil reservoir

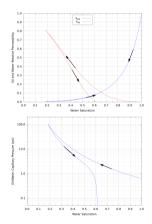

SEM Imaging

• Poro/perm controlled by grain size and clays/cementation

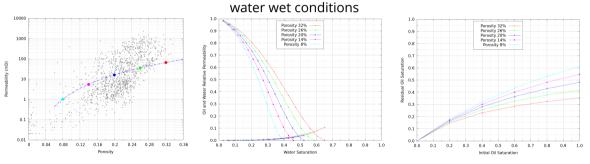

Workflow

- SEM Imaging
- Segmentation
- Statistical Analysis
- Stochastic Network
- Pore Network
 Modelling
- Relative Permeability and Capillary Pressure


Workflow


- SEM Imaging
- Segmentation
- Statistical Analysis
- Stochastic Network
- Pore Network
 Modelling
- Relative Permeability and Capillary Pressure

Workflow

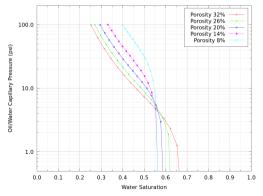

- SEM Imaging
- Segmentation
- Statistical Analysis
- Stochastic Network
- Pore Network
 Modelling
- Relative Permeability and Capillary Pressure

Relative Permeability

5 models with a range of cementation

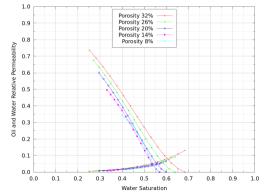
Imbibition

relative permeability

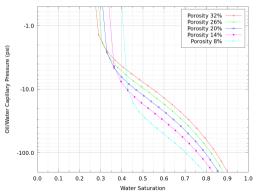

Higher residual oil saturation at low porosity

Gilbert Scott

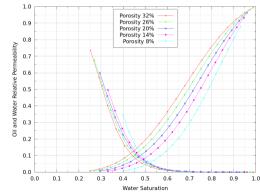
Trapping curves


Water Wet Conditions

• Drainage to a fixed capillary pressure

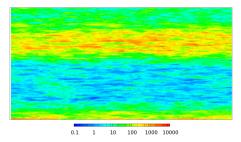

Imbibition Capillary Pressure

Imbibition Relative Permeability

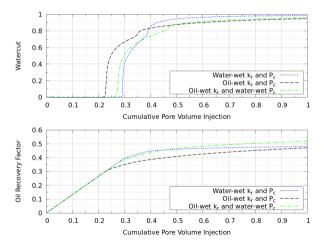


Oil Wet Conditions

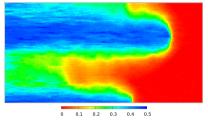
• Drainage to a fixed capillary pressure


Imbibition Capillary Pressure

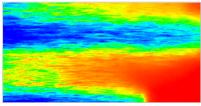
Imbibition Relative Permeability


Reservoir Modelling

- Heterogeneous reservoir model
- Data from North Sea Jurassic oil reservoir
- 2D cross-section
- 1 Producer and 1 water injector
- Oil:water viscosity ratio = 2:1



Permeability (mD)


Reservoir Model Results

Water-Wet kr and Pc - ΔS_w at 0.25 PVI

Oil-Wet kr and Pc - ΔS_w at 0.25 PVI

0.2 0.4

Conclusions

- Digital rock physics is a valuable tool for reservoir engineering
- Pore network models can be generated from high resolution 2D SEM imaging
- Imbibition capillary pressure is important in finely gridded simulation models
- Knowledge of the rock wettability is important for waterflood modelling