Northern Lights

A European CO₂ transport and storage network

Evaluation of the CO₂ plume migration for the Northern Lights project

Szczepan Polak, Elvira Milovanova, Ingveig Torsnes

Content

- Northern Lights project overview
- Northern Lights CO₂ storage concept
- Project schedule challenges
- Approach and methodology for evaluation of CO₂ migration and storage capacity
- Results of the study
- Containment and conformance monitoring
- Summary and conclusions

Northern Lights – transport, injection and permanent storage of CO_2 equinor

3 | CCUS Conference 2020

27 October 2020

Open

Northern Lights CO₂ storage concept

- CO_2 injection into dipping saline aquifer in the • Lower Jurassic Dunlin Gp. sandstones in ELO01 \rightarrow Drake Fm. is a primary seal \rightarrow no stratigraphic trap within the ELOO1
- CO_2 will be trapped while migrating northwards ٠ (up-dip) within the Dunlin Gp.

Rogaland Gp secondary seal complex

Shetland Gp secondary seal complex

Cromer Knoll Gp secondary seal complex

Troll Vest 31/5-7 (Eos) 31/2-3 31/8-1 Dunlin Gp Secondary seal Based on seismic data from CGG Prediction of expected CO₂ plume extent after 37,5 Mt injected (1.5 Mt per year over 25 years) 1-2 deg Vertical scale exaggerated 10 times Frimary sea Dip at Top Johansen: ~1-2° Draupne Fm secondary seal co Heather A Cook storage unit Amundsen Heather B Heather C Fensfjord Brent Statfjord Burton Sognefjord Troll Vest gas province Krossfjord Drake primary seal unit Johansen storage unit

4 | CCUS Conference 2020

Seabed

Hordaland Group

Nordland Group

Open

27 October 2020

Zscale: 10x

Northern Lights - challenging project schedule equinor S Ν Depth (TVD MSL) Eos 31/8-1 31/5-2 31/2-1 31/2-3 Phase 1 development: one injector, rate 1.5 Mt/y, duration 25 years Evaluation of CO₂ plume Eos (31/5-7) (confirmation well) drilled in Q4 2019-Q1 2020 migration pattern Investment decision in Q2 2020 \triangleright required > Requirement for the CO_2 to stay within EL001 until 2054 -1500 -2000 -2500 Based on seismic data from CGG -3000 ~ 2 deg - flat structure Vertical scale 1:10 *Exploitation license 001 Rogaland Gp secondary seal complex Cook storage unit Amundsen Seabed Draupne Em secondary seal complex Heather E Heather A Nordland Group Shetland Gp secondary seal complex Heather C Fensfjord Brent Burton Statfjord Interpretation Troll Vest gas province Hordaland Group Cromer Knoll Gp secondary seal complex Sognefjord Krossfjord Drake primary seal unit Johansen storage uni

5 | CCUS Conference 2020

Open

27 October 2020

Evaluation of the CO₂ migration and storage capacity

- Ensemble based approach that allows to perform the uncertainty study:
 - Static and dynamic uncertainty parameters included as input variables in the modelling workflow
 → a parameter could be a scalar, a vector, a map or a 3D grid property
 - Uncertainty parameters described by continuous or discrete probability distributions
 - Sampling from distributions using Monte Carlo method
 → generates an ensemble with multiple dynamic model
 realisations covering the uncertainty range
- Ensemble of 400 realisations run with Eclipse 300 software (CO2STORE module)

Example of CO_2 distribution in the reservoir in 2054; 1 of 400 realisations

Open

equinor

Evaluation of the CO₂ migration and storage capacity

- Ensemble simulation output is used to calculate the statistics and to evaluate dynamic uncertainty study results with focus on:
 - CO₂ migration versus time
 → amount of CO₂ crossing the licence boundary after 30 years from start of injection
 - Total injected CO₂ volumes
 → storage and injection capacity vs. injection pressure

27 October 2020

equino

Evaluation of the CO₂ migration risk and storage capacity

equinor 🐓

Storage capacity is an amount of CO_2 that can be stored within the planned development (no extra capex)

✓ Chance of crossing license boundary

no 3^{rd} party migration exposure \rightarrow CO₂ stays within defined storage complex

✓ Chance of reservoir pressurisation

integrity of the caprock cannot be compromised \rightarrow injection capacity restricted by maximal allowed reservoir pressure

a) Reservoir modelling loop (pre-sanction, post well)

b) Modus operandi, yearly cycle

27 Octobe

Results of the study

- Results from the reservoir modelling indicate impact of the following parameters on CO₂ plume migration:
 - ➤ reservoir permeability
 - \succ relative permeability model (CO₂ mobility)
 - ➤ vertical barriers

barrier (yellow) vs. extended barrier (blue)

Effect of reservoir permeability on CO_2 migration distance: high permeability (blue) vs. low permeability (yellow and red)

Effect of relative permeability on CO_2 migration distance: high mobility CO_2 (blue and green) vs. low mobility (red and yellow)

9 | CCUS Conference 2020

Open

equinor

Results of the study

- Phase 1 development:
 - injection rate 1.5 Mt/y, duration 25 years

% of realisations fulfilling criteria (probabilistic approach, 400 realisations)		
Criteria Scenario	0% of injected CO₂ outside licence by 2054	<1% of injected CO ₂ outside licence by 2054
1 well	81 %	93 %
2 wells	94 %	99 %

- Mitigation strategy:
 - Containment and conformance monitoring
 - Contingent well \rightarrow can mitigate both injectivity issues and migration

Mass (Mt) of CO₂ out of the license by 2054: one vs. two injection wells

Containment and conformance monitoring

• Monitoring plan

 \rightarrow in-well monitoring of pore pressure and temperature, and seismic (active and passive) monitoring

- Repeated seismic surveys will be used for containment and conformance monitoring
 - Containment \rightarrow retention of CO₂ within the storage complex
 - Conformance \rightarrow CO₂ plume behaviour according to expectations/model prediction
- Non-conformance or non-containment might trigger modifications to the injection programme
 - updating well injection rates and/or injection intervals,
 - moving injection locations or
 - stopping injection in the present location

11 | CCUS Conference 2020

Open

27 October 2020

Summary and conclusions

- The Northern Lights project is expected to come on stream in 2024
- The very tip of the CO₂ plume will migrate northwards, across the current license boundary, and will be sequestered deep below the Troll field
- Current storage capacity is defined by the project as an amount of CO_2 that can be injected and will not migrate across the license boundary within minimum 30 years
- A reservoir modelling workflow allowed to evaluate reservoir uncertainties within a compressed timeframe between drilling the exploration well and the project investment decision

- Study results show that project's Phase 1 development ambition of injecting 1.5 Mt/y in 25 years and $\rm CO_2$ not crossing the license boundary within 30 years is achievable
- Results indicate that reservoir permeability, relative permeability model and reservoir flow barriers have the strongest impact on $\rm CO_2$ migration pattern
- The reservoir monitoring plan will allow the estimation of CO₂ migration velocity from 4D seismic surveys
- In line with regulatory requirements, a mitigation strategy has been developed to address the unlikely scenario of non-conformance or non-containment of CO₂

Northern Lights

A European CO₂ transport and storage network

