Northern Lights

A European CO₂ transport and storage network

Subsurface contributions to the Northern Lights CO₂ storage project sanction: Planning for success in an unexplored license

Renata Meneguolo, Tonje Målbakken, Laurent Galvani, Silvia Kassold, Diego Alejandro Vazquez Anzola

Northern Lights – transport, injection and permanent storage of CO_2

Northern Lights CO₂ storage concept

- Storage Complex: Lower Jurassic Dunlin Gp. *within EL001*
 - Johansen and Cookfms. main storage units
 - Drake Fm. primary seal (seismic reflector)
 - 2500 m below sea level, secondar seals exist
- Semi regional sloping aquifer, underexplored
 - No well penetration within EL001 until 2019
 - 18 m core from well 31/2 ~ 20 km N of license
- High-energy shallow marine depositional environment
 - N-S trending coastline, W deepening trend
 - Sand presence, quality and extent main uncertainty

Storage Complex defined stratigraphically and areally, CO_2 to remain within EL001

Time line for subsurface work

Subsurface methodology – preparing for swift decisions

Geomodelling input: capturing uncertainty span	Geomodelling approach: full flexibility	Benchmark for well results: Project Acceptance Criteria
 Geophysics: Seismic envelope T/D conversion Attribute maps Geology: Large-scale correlations Five depositional concepts incorporating attribute maps Vertical and lateral trends 	 Definition of imiting factors for storage capacity Constrain: license boundary Testing of crucial parameters FMU[™] (Fast Model Update) setup Seamless static to dynamic interaction for stochastic simulations Readiness to incorporate well results Continuous and interactive process 	 Criteria to proceed to FID within time frame Sand presence and quality Injectivity Monitorability Connectivity Pressure in Dunlin Gp. Hydrostatic or ≤3 bar depleted Seal integrity Detailed well data acquisition, analyses and implementation program
g soft acoustic nee hansen I0 ms -	E orrelations E to set	implementation program For the second static model Net-to-gross maps

Well results impact on subsurface uncertainties

Risk summary, schematic

Post-drill, core measurements and dynamic data acquisition

Residual (operational) risk

Summary and conclusions

The Northern Lights project's ambition is to create the infrastructure for industrial-scale transport, injection and permanent storage of CO₂

- Contingencies to subsurface work:
 - Storage area pre-selected
 - Pre-investments made on facilities (onshore storage, satellite)
 - Tight time line to FID
- Storage concept:
 - Injection in sloping semi-regional aquifer (Lower Jurassic Dunlin Gp.) within EL001
 - No well penetrations
- Approach to subsurface evaluation in the time frame:
 - A range of geological concepts and relative likelihood developed
 - Swift evaluation process by testing pre-well assumptions with the well results
 - Modeling approach (FMU) flexible enough to incorporate the well results (while still in well planning phase!)

- Eos well results: success!
 - Screened out most of the proposed concepts
 - Re-assessed geological understanding (more resolution on depositional processes)
 - Confirmation than planned volumes can be stored
 - FID delivered on time
- Lessons learnt: crucial factors
 - Comprehensive front-end work
 - Detailed plan for analyses and implementation of well results in the time frame

Northern Lights

A European CO₂ transport and storage network

Subsurface contributions to the Northern Lights CO₂ storage project sanction: Planning for success in an unexplored license

Renata Meneguolo, Tonje Målbakken, Laurent Galvani, Silvia Kassold, Diego Alejandro Vazquez Anzola

