DNV·GL

OIL & GAS

Managing the significant threat of corrosion under insulation DNV GL CUI Manager

Frode Wiggen

Agenda

01	Background
02	Joint Industry Project
03	CUI risk management methodology
04	Implementation
05	Q&A
	_

A hidden killer

- Corrosion Under Insulation is difficult to detect.
- Lack of cost effective non-intrusive inspection methods.
- The oil and gas industry has never operated under a standard methodology.
- There is no decision-making tool for managing the threat of CUI.

New industry standard driven by industry collaboration

New industry standard driven by industry collaboration

Risk - based management of corrosion under insulation DNVGL-RP-G109 – methodology description

CUI process as described in DNVGL-RP-G109

CUI barriers

$$PoF_{CUI} = f(PoF_{material}, PoF_{coating}, PoF_{water wetting}, PoF_{design})$$

Barrier assessment, material

PoF as Function of Temp.

Barrier assessment, coating

		NACE SP0198		Age of the coating								
Description	NORSOK M-501	2010 syst.	Temp.	0.5	C 10	11 15	16.20	21.25	26.20	21.25	× 2F	Comment
Description	system ref	ret.	area	0-5	6-10	11-15	16-20	21-25	26-30	31-35	>35	Comment Not intended to be used as a protective layer under
Primer (<50 μm)	NA	NA	<60ºC	VH	VH	VH	VH	VH	VH	VH	VH	insulation.
Hot Dip Galvanizing (HDG)	NA	NA	<200ºC	L	М	н	VH	VH	VH	VH	VH	Ref ISO 14713-1.
Zinc Silicate with top sealer	NA	NA	<105ºC	L	М	н	VH	VH	VH	VH	VH	Not to be used under insulation according to NORSOK M-501.
2 layer with zinc rich primer as first layer (vinyl,	System 1	NA	<80ºC	М	н	VH	VH	VH	VH	VH	VH	Not to be used under insulation according to NORSOK M-501.
3 layer with zinc rich primer as first layer (epoxy,	System 1	NA	<80ºC	VL	L	М	н	VH	VH	VH	VH	Not to be used under insulation according to NORSOK M-501.
Two component epoxy or polyester based coating	System 7A	NA	<80ºC	VL	VL	L	М	н	VH	VH	VH	Not to be used under insulation according to NORSOK M-501. Need prequalification.
3 layer on epoxy primer (zinc free)	System 6 (A/B) (SS)	NA	<80ºC	L	М	н	VH	VH	VH	VH	VH	Not to be used under insulation according to NORSOK M-501.
2 layer epoxy coating (>350 μm)	System 7 (B/C)	SS-1/CS-1	-45 to 60ºC	VL	L	М	н	VH	VH	VH	VH	Not to be used under insulation according to NORSOK M-501. Need prequalification
2 layer epoxy Phenolic / Novolac	System 6C (SS) System 9 (CS)	SS-2/3 / CS- 3/4	-45 to 120ºC/150	VL	VL	L	М	Н	VH	VH	VH	Ref NORSOK 501.
Fusion Bond Epoxy (FBE)	NA	CS-2	-45 to 60ºC	L	М	н	VH	VH	VH	VH	VH	Ref NACE SP0198. Shop application only. Potential for cracking.
Thermal Spray Aluminum (TSA) with top sealer	System 2A	SS-6/CS-5	-45 to 595ºC	VL	VL	VL	VL	L	М	н	VH	Normative ref NORSOK M-501.
Air dried silicone or Modified silicone	NA	SS-4	-45 to 540ºC	М	н	VH	VH	VH	VH	VH	VH	Ref NACE SP0198. Limited information for this system available. Testing and prequalification needed.
Inorganic copolymer or coatings with an inert multipolymeric matrix	NA	SS-5 / CS-6	>100°C to 650ºC	L	Μ	н	VH	VH	VH	VH	VH	Ref NACE SP0198. Evaluation based on testing of 2. generation products, limited practical experience. Further testing and prequalification needed.

Barrier assessment, water wetting

		Climate
--	--	---------

- Location
- Cladding
- Insulation type
- Drainage

	Very High	High	High	Very High				
	High	Medium	High	Very High				
อ	Medium	Low	Medium	High				
osu	Low	Very Low	Low	Medium				
exp	Very Low	Very Low	Low	Low				
e.		Low	Medium	High				
Wat		Probability of breach due to workmanship						

- Workmanship
- Inspection & Maintenance
- Age

Barrier assessment, design

Nominal OD 20 30 STD 40 60 XS 80 100 120 140 160 XXS pipe size mm mm/inch mm/inch

15	1/2	21.2			2 77	2 77		3 73	3 73				1 78	7 47
10	72	21.5			2.77	2.77		5.75	5.75				4.70	7.47
20	3/4	26.7			2.87	2.87		3.91	3.91				5.56	7.82
25	1	33.4			3.38	3.38		4.55	4.55				6.35	9.09
32	1¼	42.2			3.56	256	ղի ն		4.85	h re	ବଙ୍କ	a <i>c</i> t	6.35	9.70
40	1½	48.3			3.68	<u>1</u> 9.00		9.05	RANGE C		ash	GGG	ιςφ	10.15
50	2	60.3			3.91	De	ടിത	n ^{5.5}	Sch	nedi	ທ		8.74	11.07
65	21/2	73.0			5.16	5.16		7.01	7.01				9.53	14.02
80	3	88.9			5.49	5.49		7.62	7.62				11.13	15.24
90	31⁄2	101.6			5.74	5.74		8.08	8.08				-	-
100	4	114.3			6.02	6.02		8.56	8.56		11.13		13.49	17.12
125	5	151.3			6.55	6.55		9.53	9.53		12.70		15.58	19.05
150	6	168.3			7.11	7.11		10.97	10.97		14.27		18.26	21.95
200	8	219.1	6.35	7.04	8.18	8.18	10.31	12.70	12.70	15.09	18.26	20.62	22.01	22.23
250	10	273.1	6.35	7.80	9.27	9.27	12.70	12.70	15.09	18.26	21.44	25.40	28.58	25.40
300	12	322.9	6.35	8.38	9.53	10.31	14.27	12.70	17.48	21.44	25.40	28.58	33.32	25.40
350	14	355.6	7.92	9.53	9.53	11.13	15.09	12.70	19.05	23.83	27.79	31.75	35.71	
400	16	406.4	7.92	9.53	9.53	12.70	16.66	12.70	21.44	26.19	30.96	36.53	40.49	
450	18	457.2	7.92	11.13	9.53	14.27	19.05	12.70	23.88	29.36	34.93	39.67	45.24	
500	20	508.0	9.53	12.70	9.53	15.09	20.62	12.70	26.19	32.54	38.10	44.45	50.01	
550	22	558.0	9.53	12.70	9.53	-	22.23	12.70	28.58	34.93	41.26	47.63	53.98	
600	24	609.6	9.53	14.27	9.53	17.48	24.61	12.70	30.96	38.89	46.02	52.37	59.54	
650	26	660.4	12.70	-	9.53	-		12.70						
700	28	711.2	12.70	15.88	9.53	40		POF	Wit	th r	esd	ect	to	
750	30	762.0	12.70	15.88	9.53	in a		12.70						
800	32	812.8	12.70	15.88	9.53		esig	D .7	SC	nea	ulle			
850	34	862.6	12.70	15.88	9.53	17.48		12.70						
900	36	914.4	12.70	15.88	9.53	19.05		12.70						
950	38	965.2			9.53			12.70						
1000	40	1016.0			9.53			12.70						
1050	42	1066.8			9.53			12.70						
1100	44	1117.8			9.53			12.70						
1150	46	1168.4			9.53			12.70						
1200	48	1219.2			9.53			12.70						

Ref ASME B36 10

From PoF to risk assessment

Change parameters that cause the risk

Modifications, maintenance, repair

Increase knowledge of the parameters causing the risk (remove uncertainty)

 Analysis, new data, new technology and knowhow, inspection and monitoring

Risk reducing effect of mitigation, examples

Mitigation	Material	Coating	Water wetting	Design	Comment
GVI			Limited effect		
CVI external cladding			Short term effect		
CVI under insulation		Good effect	Good effect	Good effect	
Refurbishment of coating		Very good effect	Good effect	Very good effect	Assumed controlled conditions and QA
Coating local repair		Short term effect			Often reduced quality
Repair of insulation damage			Good local effect		Assumed that dry condition is confirmed and assured
NDT-RT				Short term effect	
Permanent removal of insulation	Very good effect	Very good effect	Very good effect	Very good effect	

Update of risk based on mitigation

Examples of mitigation:

- Permanent removal of insulation
- CVI after removal of insulation, reinstall insulation afterwards
- RT-NDT of 50% hot spots
- General visual inspection
- Coating repair, spot
- Coating repair, full refurbishment

Implementation – Digital tool

CUI Manager

NEW VISION NEW CONTROL

A systematic approach

DNV-GL

RECOMMENDED PRACTICE

DNVGL-RP-G109

Edition December 2019

Risk based management of corrosion under insulation

DNV·GL								Assessment Plannin	ng Workpacks	Reporting Evalua	ation 🚨 🕶
CUI MANAGER	Over	iow									
🛠 Home	Site: Df	NV GL Test Site	TP								
😧 Asset											
T Assessment	® M:	atrix O Histogram	1							Assess	ment Long Term Plan
🛗 Long Term Plan		PoF \ CoF →	VL.	L	м	н	VH	Show 10 v entries		Search:	
Planning		VH	2	4	4	3	2	Tag v	Risk 0	CoF 0	PoF 0
		н	3	3	1	3	4	Filter	Filter	Filter	Filter
T Workpacks		м	6	5	7	10	7	8"-WI-41710-C25B	өн	●н	● H
Reporting		L	3	1	3	5	0	8"-WI-41709-C25B	•L	● м	● VL
Evaluation		VL	2	3	1	2	3	8"-PL-10030-C1B	●L	• VL	●н
he Charles								8"-PL-10019-C3B	өн	● VH	● м
C Strategy								6"-WI-41708-C1B	● VL	• L	• VL
🛢 GDB								6"-WI-41703-C1B	• VL	● VL	• VL
•								6"-WI-41154-C25C	●L	● VH	• VL
Administrator								6"-WI-41152-C1B	•н	•н	<u>•</u> м
👬 Data								6"-WI-41083-C1B	●L	<mark>-</mark> М	●L

The electronic PDF version of this document, available at the DNV GL website drugl.com, is the official, binding version

A systematic approach – with many features

 Implements the **methodology** and CUI experiences data from **the Recommended Practice**

© 2020 DNV GL - CUI Manager Version: 1.0 (12/08/2020)

- Implements the **methodology** and CUI experiences data from **the Recommended Practice**
- Facilitates structured continuous assessment and documentation of present and **future** CUI risk

CUI Manager functionalities

- Implements the **methodology** and CUI experiences data from **the Recommended Practice**
- Facilitates structured continuous assessment and documentation of present and **future** CUI risk
- Facilitates prioritisation of most cost and risk efficient mitigation

© 2020 DNV GL - CUI Manager Version: 1.0 (12/08/2020)

- Implements the **methodology** and CUI experiences data from **the Recommended Practice**
- Facilitates structured continuous assessment and documentation of present and **future** CUI risk
- Facilitates prioritisation of most cost and risk efficient mitigation
- Integrate with existing ERP systems and enables machine learning

- Implements the methodology and CUI experiences data from the Recommended Practice
- Facilitates structured continuous assessment and documentation of present and **future** CUI risk
- Facilitates prioritisation of most cost and risk efficient mitigation
- Integrate with existing ERP systems and enables machine learning
- Build a global data base for shared
 experience transfer and improvements

Experience transfer

	ה	
	ינ	

CUI is a common challenge across geographies and industries Information sharing and learning across companies and industries are poor The CUI Manager will build a global shared database to enable learning across industries DNV GL will issue annual CUI learning reports to CUI manager users

Increase safety and reduce cost

Thank You! For more information visit dnvgl.com/CUI or please contact us.

Frode Wiggen

Frode.Wiggen@dnvgl.com +47 91157161

www.dnvgl.com/CUI

SAFER, SMARTER, GREENER

The trademarks DNV GL[®], DNV[®], the Horizon Graphic and Det Norske Veritas[®] are the properties of companies in the Det Norske Veritas group. All rights reserved.

CONFIDENTIAL

