Slugging Reduction and Production Enhancement by Emulsion Breaker Injection in Gas Lifted Wells. Ekofisk Case.

Danila Shutemov, CSRI Lead
Problem statement

• Most of GEA wells over the time start to produce at low bottom hole, become heavy and hence start slugging

• Slugging leads to extensive fluctuations in process facilities which has negative impact at separation, instrument control, oil metering, etc.

• Slugging can have a negative impact at production

Fig. 1. Example of slugging development over time
Solution

- Slugging can be improved by application of emulsion breaker injection in gas lift system
- Reduced viscosity gives less pressure drop across the tubing and hence well shows more stable flow
- VRA – Viscosity Reducing Agent

Fig. 2. Example of VRA impact at well slugging
Project History

| Pilot 1 | 2016 | Evaluated applicability and identified potential candidates for the trial
Performed Pilot 1. Proof of concept obtained.
Tech worked, but was not applicable for all wells (25% success) |
| --- | --- | --- |
| Pilot 2 | 2017-2018 | Developed simulation model for screening of the new candidates
Completed well integrity impact evaluation
Performed 10 days field trial – “Pilot 2” at 7 Ekofisk wells
Observed sustained slugging reduction & variable production uplift with higher success rate (70%)
Recommended to test all wells prior to permanent implementation |
| Pilot 3 | 2019-2020 | Developed semi-permanent testing facility design
Performed environmental impact evaluation and obtained NEA permission
Started Pilot 3 Nov. 2020 |
<table>
<thead>
<tr>
<th>Well</th>
<th>Δ Oil, bopd</th>
<th>Δ Water, bwpd</th>
<th>Δ Total Liquid, %</th>
<th>Water Cut Prior, %</th>
<th>Water Cut After, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well 1</td>
<td>-4</td>
<td>+187</td>
<td>+5.5</td>
<td>88.6</td>
<td>90</td>
</tr>
<tr>
<td>Well 2</td>
<td>+28</td>
<td>+238</td>
<td>+7.4</td>
<td>87.5</td>
<td>87.6</td>
</tr>
<tr>
<td>Well 3</td>
<td>+16</td>
<td>+80</td>
<td>+4.2</td>
<td>93.3</td>
<td>92.9</td>
</tr>
<tr>
<td>Well 4</td>
<td>+132</td>
<td>+55</td>
<td>+5.5</td>
<td>70.0</td>
<td>67.8</td>
</tr>
<tr>
<td>Well 5</td>
<td>+213</td>
<td>+82</td>
<td>+7.8</td>
<td>77.3</td>
<td>73.7</td>
</tr>
<tr>
<td>Sum</td>
<td>+385</td>
<td>+642</td>
<td>4-8</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Sensitivity to concentration

- Wells showed immediate response to EB injection in gas lift
- Production uplift was impacted by initial flush
- Uplift was sensitive to chemical concentration

Fig. 3. Sensitivity of chemical dosage
PILOT 3 scope

- Plan is to test EB injection for all gas lifted wells at all GEA production platforms
- Injection in up to 4-6 wells at the same time per platform
- After 5 days of injection, decision will be taken to continue or to stop VRA injection in particular well based on observed impact
- If VRA effect will be observed - injection in particular well will be continued & stopped after 3 months
- Goal is to quantify production uplift & define number of wells which will be included in business case for permanent implementation (uplift vs OPEX cost of permanent injection)
Conclusions

• Emulsion breaker injection in gas lift is a successful technique but is not applicable for all wells and the candidate selection method is critical

• In the two trials, sustained slugging reduction and variable production uplift was observed in some wells: 25% of wells in the first pilot and 70% of wells in the second pilot

• Where successful, 4-8% liquid uplift was achieved
 • Low oil uplift for high water cut wells
 • Didn’t result in any change in production or slugging on low water cut wells

• No well integrity or performance of topside process systems issues were observed during either trial as determined in the pretrial assessment

• Plan is to test technology on all gas lifted wells in order to quantify production uplift & define number of wells which will be included in business case for permanent implementation
Questions?