

Slugging Reduction and Production Enhancement by Emulsion Breaker Injection in Gas Lifted Wells.

Danila Shutemov, CSRI Lead

Problem statement

- Most of GEA wells over the time start to produce at low bottom hole, become heavy and hence start slugging
- Slugging leads to extensive fluctuations in process facilities which has negative impact at separation, instrument control, oil metering, etc.
- Slugging can have a negative impact at production

Fig. 1. Example of slugging development over time

Solution

- Slugging can be improved by application of emulsion breaker injection in gas lift system
- Reduced viscosity gives less pressure drop across the tubing and hence well shows more stable flow
- VRA Viscosity Reducing Agent

Stopped VRA Start - up injection VRA **Reduced slugging** injection Short SD stabilized flow Baseline +200 bopd well test +100 bwpd 4400 3750 bbl/d bbl/d Topside temperature D/S Choke pressure Downhole pressure U/S Choke pressure 3 Gas Lift Rate

Fig. 2. Example of VRA impact at well slugging

	Project History	Slugging	After EB injection in gas lift
Pilot 1 2016	Evaluated applicability and identified potential candidates for the trial Performed Pilot 1. Proof of concept obtained. Tech worked, but was not applicable for all wells (25% success)		
Pilot 2 2017-2018	Developed simulation model for screening of the new candidates Completed well integrity impact evaluation Performed 10 days field trial – "Pilot 2" at 7 Ekofisk wells Observed sustained slugging reduction & variable production uplift with higher success rate (70%) Recommended to test all wells prior to permanent implementation		
Pilot 3 2019-2020	Developed semi-permanent testing facility design Performed environmental impact evaluation and obtained NEA permission Started Pilot 3 Nov. 2020		

Pilot 2 Production overview

	Δ Oil,	Δ Water,	Δ Total Liquid	Water Cut Prior	Water Cut After
	bopd	bwpd	%	%	%
Well 1	-4	+187	+5.5	88.6	90
Well 2	+28	+ 238	+7.4	87.5	87.6
Well 3	+16	+80	+4.2	93.3	92.9
Well 4	+132	+55	+5.5	70.0	67.8
Well 5	+213	+82	+7.8	77.3	73.7
Sum	+385	+ 642	4-8	-	-

Sensitivity to concentration

- Wells showed immediate response to EB injection in gas lift
- Production uplift was impacted by initial flush
- Uplift was sensitive to chemical concentration

Fig. 3. Sensitivity of chemical dosage

PILOT 3 scope

- Plan is to test EB injection for all gas lifted wells at all GEA production platforms
- Injection in up to 4-6 wells at the same time per platform
- After 5 days of injection, decision will be taken to continue or to stop VRA injection in particular well based on observed impact
- If VRA effect will be observed injection in particular well will be continued & stopped after 3 months
- Goal is to quantify production uplift & define number of wells which will be included in business case for permanent implementation (uplift vs OPEX cost of permanent injection)

Conclusions

- Emulsion breaker injection in gas lift is a **successful technique but is not applicable for all wells** and the candidate selection method is critical
- In the two trials, sustained slugging reduction and variable production uplift was observed in some wells: 25% of wells in the first pilot and 70% of wells in the second pilot
- Where successful, 4-8% liquid uplift was achieved
 - Low oil uplift for high water cut wells
 - Didn't result in any change in production or slugging on low water cut wells
- No well integrity or performance of topside process systems issues were observed during either trial as determined in the pretrial assessment
- Plan is to test technology on all gas lifted wells in order to quantify production uplift & define number of wells which will be included in business case for permanent implementation

Questions?